

BTech 451 2015
Final Report
CHEP Pallet Management System

Avish Kapadia
akap171 | 2657196
COCA-COLA AMATIL NEW ZEALAND

Page | 1

Contents

Abstract .. 2

Disclaimer ... 3

People .. 3

Author ... 3

Academic Supervisor ... 3

Industry Mentors ... 3

BTech. Information Technology Coordinator ... 3

Acknowledgements .. 3

The Company .. 3

Motivations ... 4

My Project in a Nutshell .. 5

Feasibility Analysis ... 6

Programming Languages .. 6

SAP ABAP ... 7

Python3 ... 8

SQLite ... 9

Chosen Programming Languages ... 11

Related Work ... 13

WiseTrack Asset Tracking ... 13

Bettaway Pallet Systems .. 14

TrackIt Asset Tracking ... 16

Solution Design ... 17

Project Development .. 22

Python Application Flow ... 29

Stage 1 ... 30

Stage 2 ... 31

Stage 3 ... 32

Page | 2

Stage 4 ... 32

Stage 5 ... 33

Stage 6 ... 33

Stage 7 ... 33

Python Application Development ... 33

Future Work .. 48

GUI – Graphical User Interface ... 48

SQL Server ... 50

Virtual Desktop Infrastructure ... 51

Additional Security Measures .. 51

Conclusion .. 54

Bibliography .. 55

Abstract

I undertook a project for Coca-Cola Amatil (“CCA”) and created a solution to

improve their current Commonwealth Handling Equipment Pool (“CHEP”) pallet

management process. Pallet liabilities were manually entered into the system by

CCA Distribution Centre employees and as a result certain scenarios existed in-

which pallet transfers did not occur. Therefore, CCA were liable for these

‘unaccounted’ pallets. The main goal of my project was to automate and

correctly determine the pallet liability transfer process of pallets.

The first half of my report focusses on the business issue and possible

alternative solutions that already exist within the marketplace. I also proposed

changes for CCA’s current system and business processes that included the use

an intermediary system. In the second half of my report I focus on the steps I

took to designing and developing an intermediary solution also known as my

Python application to address CCA and CHEP’s requirements. My developed

intermediary solution significantly improves business processes and also avoids

the governance that is set in place by Coca-Cola Amatil Australia.

Page | 3

Disclaimer

Please note that this report is confidential and contains sensitive data belonging

to Coca-Cola Amatil New Zealand and Coca-Cola Amatil Australia. Please ensure

this report is not distributed without the consent of the author and Coca-Cola

Amatil.

People

Author

Avish Kapadia

Academic Supervisor

Dr. Giovanni Russello – University of Auckland

Industry Mentors

Jet Wu – Coca-Cola Amatil New Zealand

Darren Ruston – Coca-Cola Amatil New Zealand

BTech. Information Technology Coordinator

Dr. Sathiamoorthy Manoharan – University of Auckland

Acknowledgements

I would like to thank the following people for their tremendous continual support

whilst I undertake my Bachelor of Technology Degree and BTech 451 Project.

My parents: Anil & Darshana Kapadia.

Academic Supervisor: Dr. Giovanni Russello.

Industry Mentors: Jet Wu and Darren Ruston.

BTech. Information Technology Coordinator: (Mano) Dr. Sathiamoorthy

Manoharan.

The Company

Coca-Cola Amatil New Zealand are the licenced bottlers of the Coca-Cola

Company in New Zealand. CCA produce an extensive range of well-known

products such as L&P, Coca-Cola, Coca-Cola Zero, Coca-Cola Diet, Powerade and

Page | 4

Keri Juice. CCA has been in operation since the early 1900’s and currently

employs well over 1000 employees in New Zealand alone. Within New Zealand

CCA has five production facilities located across Auckland, Putaruru and

Christchurch (Coca-Cola Amatil, n.d.).

CCA have a significant impact on the local economy. Recently CCA spent 50

million NZD upgrading two CCA facilities within Auckland and Christchurch to

support the blow-fill technology. In 2008 CCA spent 80 million NZD to create

their new and advanced distribution centre in Auckland (Coca-Cola Amatil, n.d.).

With these investments and upgrades, customers are provided with a high

quality product within in timely manner.

Motivations

The goal of my project was to improve the efficiencies around CCA’s current

CHEP pallet movement. CHEP pallets are distinct blue coloured pallets that have

standardised sizes for distribution within New Zealand. CHEP pallets are a key

requirement when supplying goods to supermarkets and major organisations.

These pallets meet rigorous standards and undergo compliance audits (CHEP,

n.d.). The current CHEP pooling model is designed for pallets to be repaired and

reused. CHEP reuses damaged pallets in an effort to reduce landfill. CHEP pallets

provide many benefits, such as:

 Compatibility with existing supply chain infrastructure (CHEP, n.d.)

 Greater efficiencies during transport and storage (CHEP, n.d.)

 High pallet quality and consistency via CHEP’s worldwide network (CHEP,

n.d.)

 Load stability and reduced product damage (CHEP, n.d.)

The current CHEP pallet reconciliation process is extremely time consuming and

takes approximately four days to complete. In addition to the four days required,

the pallet reconciliation process requires the assistance of 3 additional internal

systems to balance CHEP pallets nationwide. Thus, the logistics team have

requested me to complete the process improvement to include customer pallet

movements.

Page | 5

Furthermore, the CHEP pallet management process is complex and manual and

these processes leave the business open to potential losses with pallets being

given to customers without receipts. CHEP holds CCA accountable for these

pallets and for inaccuracies in pallet inventory balances, which CCA are

financially accountable for. Pallets can be dispatched to distribution centres

throughout New Zealand, customer’s nationwide or shipping companies.

Shipping companies / Vendors such as Toll also distribute CHEP pallets, in this

scenario the shipping companies take ownership of the accountabilities

associated with the pallets.

At present, all information is manually keyed into CHEP Portfolio Plus, which is

CHEP’s pallet accounting system that tracks pallet movement and manages

transfers of pallet liability. The issue within the business process that I had

identified was the lack of accountability and the data integrity factors not being

met. Information can be simply forgotten about, which then results in the pallets

not being transferred to a customer. In these mentioned scenarios, CCA is left

accountable for these pallets which have not been recorded but have already

been transferred to a customer/shipping agent. This issue at present costs CCA

hundreds of thousands of dollars per year.

My Project in a Nutshell

To identify and create a solution for CCA, I had to initially investigate and

address the current issue at CCA. This required a thorough understanding of

CCA’s current business processes and the ability to identify areas of weakness.

Once I understood the extremely complicated business process in regards to the

inwards and outwards goods process, I was able to determine areas that could

be significantly improved. When I initially began my project all shipping

information was manually entered into CHEP Portfolio Plus software which tracks

the pallet movement and manages transfers.

The solution I have designed and created is an application that will transfer and

modify set fields of shipment information from CCA’s current SAP system into

Portfolio Plus. In addition to the aforementioned tasks, my Python application

will also be mapping customers to shipments and making changes to the

Page | 6

information as required. Though there are possible alternative methods that do

not require the use of an intermediary system, I am unable to proceed with

them due to the resourcing and governance that have been set by Coca-Cola

Amatil Australia. Coca-Cola Amatil Australia have put strict conditions in place

which prohibit me from making multiple changes to the existing software and

business workplace infrastructure.

Furthermore, the application created removes these barriers as the application

allows for greater flexibility and control. Flexibility is achieved in the sense that

the application can be altered by myself or my nominated CCA representative at

any time. I do not require clearance from CCA Australia to make adjustments to

the application. As I created this solution for CCA, I had to ensure that I met

CCA’s goals of achieving data integrity of information and zero discrepancies

between actual stocktake count of pallets and reported amount of pallets on

hand.

Feasibility Analysis

Programming Languages

As part of the design process and research required for my BTech project, I

researched and evaluated the programming languages that would be suitable for

the creation and implementation of my solution for CCA. The primary purpose of

this application was to have information parsed from CCA’s SAP system which is

based on the SAP ABAP language – extracted from my created query within SAP

and parsed into my Pallet management application for manipulation. The

extracted information is then manipulated in accordance with the requirements

set by CHEP. In addition to the requirements set by CHEP I ensured that CCA’s

business processes are met and pallet transfers are completed successfully.

They were not to be performed in a manner which meant that CCA’s customers

were transferred pallets that they were not meant to be held accountable for.

Several fields of extracted information has been adjusted prior to being

forwarded onto CHEP’s Portfolio Plus application which accounts for a key

requirement of my project. The transfer was done via the use of CHEP’s EDI

system. My Python application transfers all the shipment orders and related

information to the CHEP EDI system which then feeds the information into the

Page | 7

Portfolio Plus software that the CCA logistics team can then view and modify if

required.

Therefore, bearing the requirements of the application in mind, my research

below covers three major programming platforms. These languages are SAP

Advanced Business Application Programming (ABAP), Python and SQLite. After

concluding my assessment study on these languages, I chose the most essential

languages that I must know sufficiently in order to be able to complete the

design and creation phase of my Python application.

Due to the requirements of my project, I was required to use different platforms

to complete my project to a high quality standard. Bearing in mind the quality

demanded of this project, I ensured that I met the functionality requirements

that align with CCA’s business requirements. Below is a description of each

language researched, which allowed me to create my solution for CCA.

SAP ABAP

SAP Advanced Business Application Programming (ABAP) is a programming

language that is used by large organisations worldwide. It essentially runs their

critical SAP business systems. SAP is the world’s largest inter-enterprise

software company and the world’s fourth-largest independent software supplier

(Rose, 2013). The SAP applications provide capabilities to manage finances,

asset accounting, cost accounting, production operations and materials,

personnel, plants and archived documents (Rose, 2013). This programming

language also includes the use of logical databases, which I will use thoroughly

within this project.

The use of SAP was required for the first phase of my project as the majority of

the required information that was needed for CHEP Portfolio Plus was contained

within CCA’s SAP system. Throughout the design and creation of my Python

application I was required to educate myself in order to have the required skill

level to program and create extraction reports of the required shipment,

customer and vendor information. Since the project with CCA begun, I strived to

study the basics of SAP and learn how to use the required SAP transactions.

Page | 8

I had then learnt the required basics from my industry mentor Jet and I had also

used an online SAP ABAP Programming for Beginners Udemy course (Moxon,

2014). Currently within the New Zealand and Australia CCA sites, SAP is used

heavily for the critical business systems such as orders, shipping and inventory

management. Therefore the use of SAP is a significantly large factor within my

project.

The importance of knowing how SAP operated was crucial to this project as the

EDI system I used also connected onto CHEP’s SAP system. The information

from CHEP’s SAP system as previously mentioned was then parsed on

automatically via the back-end of CHEP onto their respective Portfolio Plus

software of which was then allowed for authorised CHEP and CCA employees to

access the data and transactions that had been recorded into the system.

Python3

Python is a relatively new language which was released back in February 1991

by Guido Van Rossum who was the primary designer of the language (The

Python Programming Language, 1997).

Many of Python’s original/initial features originated from the ABC language. ABC

had certain problems that Guido Van Rossum wanted to correct. Moreover,

certain features were kept and taken from ABC. One of Guido’s primary goals

was to create a scripting language that was generally extensible (The Python

Programming Language, 1997).

The following are the significant features included with Python:

 Object-oriented programming language

 High level dynamic data types and classes

 Combination of remarkable power with clear syntax

 Several interfaces to system calls and libraries

 Extensible in C and C++

Python has been noted as highly suitable for rapid prototyping of complex

applications and this is of significant advantage to me. It is important to note

that this enabled me to show progress to my stakeholders at CCA and to my

university supervisor. Python is a language that is used to connect multiple

Page | 9

sources of information together and allow for the automation of shipment

transactions to be transferred from CCA to CHEP.

Python is the main programming language that I used within my solution as I

was required to develop a solution to address my brief within a timely manner

and also to address the requirements of future modifiability. Additionally, I chose

Python as I believe it outweighs Java’s advantages for the purpose of my

solution. As of July 2014, the Python programming language is the most popular

language for teaching introductory computer science at the top-ranked U.S.

departments (Guo, 2014).

Python allowed me to program an application that is light-weight and runs

efficiently with the use of the several libraries that are included within Python.

Thus, I decided to perform my initial research on Python rather than Java.

Python was significantly more efficient and a simpler language to understand

and create an application in, in comparison to Java. An equally important factor

to note is that the Python application works heavily with .csv formats and at

present Python has an excellent .csv module built-in which has allowed me to

extract and modify the information at ease (Python.org, 2015). The use of the

.csv module has been closely tied in with the SQLite module, which manages the

SQLite database in Python (Python.org, 2015).

Another essential module that I used within Python is the email.generator

module that generates MIME documents (Python.org, 2015). This module has

been used within my solution towards the final stage of the process.

Concluding with my Python research, I believe that the Python programming

language has provided me with the right tools and modules to complete the

main coding and aspect of the project for CCA New Zealand.

SQLite

It is defined as an in-process library that implements a self-contained, server-

less, zero-configuration transactional SQL database engine (SQLite.org, n.d.). An

important aspect to be noted with SQLite is that it is listed within the public

domain and is free for use including the commercial sector. This was an

important aspect for me to consider as once my application is used commercially

Page | 10

I believe that it would be bound automatically against such clauses. Therefore it

being allowed to be used within the commercial sector for free was also a key

point I kept in mind. SQLite is the most widely developed database in the world

(SQLite.org, n.d.). Organisations that currently use SQLite are:

 Adobe

 Airbus

 Apple

 Dropbox

 Mozilla

 Google

 Microsoft

 Python

 Skype

All the above listed organisations including many other high profile organisations

use SQLite in some way. SQLite is an embedded SQL database engine that does

not use a separate server process which enables the application to be

significantly ‘lighter’.

Ensuring that my Python application was a ‘light’ application allowed me to

compute somewhat high-resource tasks without too much of load bearing on the

CPU. SQLite was a great choice for my project as a complete SQL database with

multiple tables, indices, triggers and views can be saved into a single disk file

(SQLite.org, n.d.). The database within SQLite is a cross-platform which ensures

that if in the future CCA wish to copy the database between different systems,

such as migrating from a 32-bit to 64-bit system, then it is therefore a

possibility.

The library for SQLite at present is significantly compact, the library with all the

features enabled results in a size of less than 500 kilobytes. It is important to

note that the size of the library would be dependent on the platform and

compiler organization settings (SQLite.org, n.d.). The size of this library alone

demonstrates the agility and compactness of such a platform and is therefore a

popular database engine choice amongst many individuals and organisations

around the world. SQLite runs faster as more memory is allocated to it.

Page | 11

According to sqlite.org, SQLite is carefully tested prior to each individual release

and has a reputation for having a high level of reliability (SQLite.org, n.d.). This

was an extremely important concern for my project as I must ensure that the

database does not crash or have any software related issues. Although my

application will initially run within the TEST_DAR environment at CCA, I had to

ensure that my Python application did not have any bugs before it is released

into the Production Environment. Devastating effects can occur for the

Production and Distribution plant for CCA New Zealand if the application was to

go offline.

Chosen Programming Languages

As a result of my research into SAP ABAP, Python3 and SQLite (Version 3) I had

concluded that I was to use a combination of all three languages to create an

optimized and efficient solution for CCA. Each individual component within my

solution was be created to the highest of standards. Robert Martin considered

software as rotting design when the following five symptoms where present

(Martin, 2000):

 Rigidity – In this symptom, software would be extremely difficult to

change when required. A single change within a system would result in

several undesired changes in other linked modules. When a software has

such a symptom, many companies are hesitant to allow their software

engineers to work on the program to make changes.

 Fragility – This symptom is closely linked with rigidity. With this rotting

design symptom, the software is easily broken in multiple places whilst a

change is being performed within another area of the software. Many

companies also then become hesitant to allow changes to the software.

Robert Martin stated “As the fragility becomes worse, the probability of

breakage increases with time” (Martin, 2000).

 Immobility – This relates to the inability of being able to use software

from other projects or parts within the same project. Software engineers

may attempt to reuse software from other projects but due to the

Page | 12

complexity and extra ‘baggage’ the engineers may decide to re-write the

module instead of reusing the module.

 Viscosity of the Design - This is defined as while making a change, many

ways can preserve the design of software and others do not preserve the

design. Essentially, they can be classified as hacks to the software. It is

easier to do the wrong thing than do the right thing (Martin, 2000).

 Viscosity of the Environment – The issue with this symptom is where the

development environment is slow and inefficient (Martin, 2000). Compile

time may take an excessive amount of time and software engineers may

be required to change parts of code that do not require the compiling of

the entire code.

I have tried to ensure that the five symptoms mentioned above have been

avoided at all costs to ensure that my Python application is of the highest quality

of standards and runs efficiently. Whilst I programmed my application, I ensured

that I had sufficient in-line notation to allow future developers to make changes

as and if required by CCA.

To ensure I achieved my goal of developing a cost-effective, responsive, efficient

and well-designed application, I followed these key design practices (Microsoft,

2009):

 Keep design patterns consistent within each layer

 Do not duplicate functionality within an application

 Prefer composition to inheritance

 Establish a coding style and naming convention

 Maintain system quality

 Consider the operation of the application

Page | 13

Related Work

WiseTrack Asset Tracking

Currently there are similar technologies that are used within the world in relation

to tracking assets. From the research that I conducted, I was unable to find

exact solutions that would be fit for the requirements of CCA. Current solutions

include general asset tracking that require the use of RFID Tags. This option was

not suitable for a company such as CCA as the pallets that require tracking are

not the property of CCA, thus physical changes cannot be implemented to the

pallets to allow for tracking.

In addition, inserting a physical RFID tag per pallet was clearly not feasible, on

average 40,000 pallets are sent out of the Auckland Distribution Centre per

month. Each one of these pallets will not be returned to CCA as these pallets are

transferred to the customers and shipping companies accordingly. Once again

this proves that adding a chip to each one of these pallets is not a feasible

option.

Another point to consider with RFID tracking of each pallet is the practicality

concept. Each individual customer of CCA would not install and upgrade their

technologies to suit the tracking pallet requirements for CCA. This responsibility

does not come down to the customers of CCA. An option to somewhat solve this

current issue is WiseTrack’s solution which is a company that provides RFID

tracking of assets (WiseTrack, n.d.).

WiseTrack was built using the Microsoft Structure and uses Microsoft SQL. The

WiseTrack software combined with the use of WiseTrack’s Antennas and

equipment help deliver a solution to their clients and customers.

This option provided by WiseTrack was once again not feasible for CCA due to

the costs required and large diverse range of CCA customers within New

Zealand. Although the more cost-effective solution of Barcode Labelling is

available for customers of WiseTrack, I deemed this unsuitable due to the

following reasons:

 Not Practical

Page | 14

 Not Cost-effective

 Not Viable for all CCA Customers

 Prone to sticker being damaged during transit

After analysing WiseTrack’s solution in-depth, I had concluded that the solution

available by WiseTrack is not a practical and cost-effective solution for CCA. It is

important to note that their developed solution is primarily for companies who

ship internally within multiple distribution and shipping centres.

Although CCA ship within multiple warehouses within New Zealand, their major

consignments are sent to customers and via the use of shipping containers. As a

result of this, CCA is unable to resolve their issue by integrating a pallet tracking

system within their warehouses only.

Bettaway Pallet Systems

This pallet inventory management system known as the Bettaway Pallet System

was similar to the technology I was implementing for CCA. The current pallet

management in accordance with CCA business processes are managed by CHEP

– the manufacturer and supplier of the CHEP pallets. All pallet orders and

requests are sent to CHEP who allocate the requested number of pallets and

deliver them to CCA’s delivery location. The delivery location of the ordered

pallets are one of five nationwide distribution centres.

Bettaway have developed a solution that is currently deployed within the United

States and Canada, the solution provides pallets to customers from one of 200

pallet yards (Bettaway, n.d.). Bettaway’s solution is primarily a dispatch and

management system that looks to improve current pallet distribution within the

United States and Canada. Bettaway state that customers can save up to 35%

whilst using their platform and service. This is compared to the traditional

methods of purchase and discard methods of pallets (Bettaway, n.d.).

The use of Bettaway leans significantly more towards the supply-chain process

where end-users must contact Bettaway to organise pallet retrieval. Whereas

with CHEP, pallets are transferred to the customer’s organisation who can then

use those pallets to ship inventory to other vendors or back to CCA. Bettaway

Page | 15

also manages repair and reissue of pallets, which, although it is similar, is not

the same as CHEP. CHEP will not dispatch faulty pallets to their clients and if a

client is to damage a CHEP pallet, they are liable to pay for a total replacement

of that pallet. The following diagram represents the Bettaway current pallet

management process.

Given the Bettaway process, I was unable to implement this solution for CCA

due to the fact this solution is based on general wooden pallets which are not

CHEP branded. These pallets do not undergo the same level of testing and

compliance tests as compared to CHEP pallets. Additionally this solution is also

restricted to clients based in the United States and Canada. I found that this

potential solution is unfeasible for the current business issues I face due to the

following reasons:

 Limited to United States and Canada

 Not adherent to requirement of CHEP pallets

 No consistent quality and strength of pallets

 Not feasible to implement solution for all New Zealand CCA customers

Image retrieved from:

https://www.bettaway.com/baw/palletsServices

Page | 16

TrackIt Asset Tracking

TrackIt asset tracking is a New Zealand based company who specialise in asset

tracking with the use of RFID and GPS technology combined. Their software is a

web-based solution that enables customers to track, manage and monitor their

assets. This solution is similar to the previously mentioned WiseTrack solution,

which uses RFID tags and barcodes to enable a client to track their assets in

real-time (TrackIt, n.d.). The TrackIt solution allows a user to track their assets

and inventory in real time on any device or computer worldwide.

A collection of technologies are used such as RFID, barcodes and numerous

other methods. The management platform allows their clients to track the use of

their fixed assets. As mentioned previously, this form of solution was also not

feasible and practical for CCA as the TrackIt solution is primarily used for

tracking fixed assets. Each individual pallet cannot have such technology

implemented within them, the costs involved to do such a task would heavily

outweigh the proposed cost-savings of my solution.

Subsequently, this form of solution is suitable for a company of who transfer

their goods between multiple sites and will not dispose of the asset within one

shipment such as the transfer of a CHEP pallet. TrackIt provide a great solution

for clients who may require features such as the Real-Time tracking screen

(TrackIt, n.d.), but it is important to note that CCA did not require these

extensive features in regards to tracking a pallet.

TrackIt also provide site auditing, which is a critical feature that as a result of

my solution will allow CCA to audit their pallets much more accurately. My

implementation of this concept allows for a more accurate and quicker monthly

reconciliation process of the total number of pallets dispatched. After further

consideration and discussions with my CCA supervisors I was informed that they

wanted me to primarily focus on the automation of the shipment transactions

and that the auditing can be done on the Portfolio Plus end. In addition to the

current issue of pallet count discrepancies, CCA also faced the issue where pallet

stocktake is an extremely time-consuming and tedious task to complete. I used

the knowledge that I have learned from current similar technologies to develop

Page | 17

an optimal solution for CCA New Zealand whereby accurate information is fed

through to Portfolio Plus that allows for a better and more efficient manner in

which monthly audits can be undertaken.

Solution Design

My solution for CCA required the use of several platforms and technologies to

create a cost-effective and efficient solution, which can be heavily used on a

day-to-day basis within the CCA production environment. As with any project,

changes to the project continue to occur as the project progresses. Initially, I

had planned for my solution to be a sub-interface of CCA’s SAP system that

would collect and aggregate all the required fields of information. I have learnt

that, within a large business organisation, several requirements and constraints

are always present.

Due to resourcing and governance in-place by Coca-Cola Amatil Australia, I was

restricted to making environment changes to the production and development

SAP environments. The latest revision of my solution required me to create an

intermediary application that would receive the majority of information from the

current CCA SAP system. I was initially required to use five main tables and I

had designed the table join structure that had best matched CCA and CHEP’s

requirements. Unfortunately due to a misunderstanding of the manner in which

CHEP pallets were transferred, I had to then completely change the processing

logic of my Python application. Subsequently this meant I was required to pull

additional information through CCA’s SAP System. Thus, I then added a new

table which is the LFA1: Vendor Master. The 6 main tables I used to extract

information from CCA’s SAP system are as follows:

 VTTK: Shipment Header

 VTTP: Shipment Item

 VBFA: Sales Document Flow

 VBAK: Sales Document: Header Data

 KNA1: General Data in Customer Master

 LFA1: Vendor Master (General Section)

Page | 18

I chose the above tables as this allowed me to join the necessary tables together

in order to link all the required fields of information together. Now that all the

required tables from which information had to be extracted from have been

chosen, the next step in the design process was to come up with a solution to

view and extract that information.

Subsequently, I had to create the table joins in SAP QuickViewer also known as

SQVI transaction code. Within this transaction of SAP, I created the required

layout of the information that was to be extracted from CCA’s SAP system.

Furthermore, I designed and generated a SQVI report, which included the

majority of fields. The report contents was parsed into my Python application

which handles all the incoming fields and appends set fields of information. As I

previously mentioned, certain fields was modified by my Python application to

suit the level of quality, accuracy and data integrity of information required by

CHEP’s Portfolio Plus application and CCA’s accounting requirements.

This technological layout and design enabled me to create the most efficient

system for CCA, within the resourcing and governance that had been implied by

CCA Australia. Once the report template was completed with the final layout

design. I was meant to be given the opportunity to convert the SQVI extract into

SE93 - Maintain Transaction Code, which would allow me to view the transaction

code and modify it further to allow for automatic batch extract movements every

5-7 minutes. But unfortunately, I had put in a request numerous times to access

the SE93 transaction and was subsequently denied due to the administrative

rights in place. I will mention which changes need to be implemented within the

future work section of this report.

The automatic scheduled run time of the batch job will be discussed in-depth

with CCA and CHEP to ensure that all information is present on CHEP’s Portfolio

Plus at any given time or day.

The scheduled batch job from SE93 with the set fields of information was

required to run as a scheduled task. In the latest scenario the output file can still

be extracted as a .csv file and parsed through to my Python Application as one

of the primary sources of input. I aimed to parse the output file from SE93 by

Page | 19

uploading it to a set location that my Python application can constantly read

from. This location will be located within the internal network of CCA. This file

will be imported by my Python application and will be used according to the

required input specifications by CHEP. Furthermore, my application makes

changes to the shipment information that is received from CCA’s SAP system

and in-turn makes the subsequent changes as required by CHEP.

The Python application also displays the total number of dispatched pallets at

during each runtime of the application. This information can be is printed onto

the command line screen of the application. This application will allow CCA for a

much greater, simpler and more efficient pallet transfer process. This in-turn

should allow for CCA to perform more accurate monthly reconciliations of all

pallets and shipments that have been dispatched from the New Zealand

Distribution Centres and Warehouses. Furthermore, CCA Distribution Centre

employees will not be required to manually enter in each shipment record into

the CHEP Portfolio Plus system as this will now be automated by my Python

application.

The Python application was initially required to match customer addresses from

SAP to a CHEP-recognised customer ID. This however was then changed to a

more complicated approach due to the way pallets were allocated to customers

and vendors, thus my application was required to match two different sets of

customers and vendors according to their Customer ID and Vendor ID

respectively including other fields of relevant information. I will talk about this in

detail shortly.

I had initially decided that this information will be accessed via the use of a data

dictionary. However I decided to go down another more feasible path of which I

will also describe shortly. The Python application has been designed to match

any other values required to ensure the aspect of data integrity and credibility is

met at all times. To maintain table data within Python I used SQLite to handle all

the tabular data. SQLite enabled me to also create tables whereby the

information from them was then extracted with the correct header and field

records.

Page | 20

Once my Python application completed performing all operations on the received

data from CCA’s SAP system, the Python application performed the required

modifications of which I will also go into detail shortly. The EDI – Electronic Data

Interchange process is used finally to parse the information onto CHEP’s SAP

system which in-turn is parsed through to CHEP’s Portfolio Plus software. An EDI

is defined as computer-to-computer exchange of business documents in a

standard electronic format between business partners (EDI Basics, n.d.). The

business partners in this instance are Coca-Cola Amatil New Zealand and CHEP

New Zealand.

I used the EDI process to provide CCA with the following benefits:

 Increased volume of CCA Transactions

 Time savings

 Monetary savings

 Greater flexibility for employees

 Increased employee productivity

 Enables CCA information transfer directly to CHEP systems

 Data accuracy

 Data integrity

 Eliminates several paperwork processes

 Business streamlining

 Better reporting information

Electronic Data Interchange Solution for CCA:

My Solution

Electronic invoice sent to CCA

Page | 21

Furthermore, my Python application has been designed in a manner where the

output which needs to be sent to CHEP meets their approved document format.

This format includes the set fields of information as requested by CHEP. These

fields are required as CCA are responsible for reporting the movements of the

CHEP pallets. The pallets are transferred to Customers and Vendors of CCA. With

this reported information CHEP determines whom or which company the pallet

liability must be transferred to. For accurate pallet movement, each field must

be accurately reported to CHEP else CCA may be responsible for those

dispatched pallets. Seven movement record fields are required to successfully

log each movement. The fields are listed below with their respective

representation:

 Docket Number – Unique docket number

 Sender ID – CCA’s sender ID

 Receiver ID – CCA’s customers CHEP ID

 Dates – Date of Dispatch (DOD), Date or Receipt (DOR) and Effective

Date (EFD)

 References – Sales Order, Purchase Order and Consignment Note

 Material – CHEP Equipment ID

 Quantity – Number of pallets

Once my Python application had composed the table with all the relevant fields

according to the criteria set by CCA and CHEP, the next stage in the process was

to compose the document in the approved format and layout for CHEP’s EDI.

Many conditions had to be met in order to successfully log a pallet movement.

These conditions are that the correct header records and movement records

must be recorded within each exported file. The following header records are

also required to successfully log a pallet movement:

 Header Indicator – Indicated by ‘H’

 Recordnum – Running total of the record/row

 RecordCount – Total records in file including header record

 SendDate – Date record sent

 ProgramName – Indicated by CDKTF

 ProgramVersion – CHEP Standard EDI Docket format version number

Page | 22

 InformerGLID – CHEP Assigned Customer GLID, this indicates CCA

location

 CountryCode – Indicated by 64, thus New Zealand

 CustomerFileRef – First 4 characters of the CCA allocated docket prefix

with an additional sequential counter. This is unique for each file that is

sent to CHEP.

The next step in the solution process was to parse the fully composed document

with the correct header records and correct field records into the CHEP EDI

which essentially parses the information through CHEP’s EDI and into Portfolio

Plus. I have discussed this in-depth with CCA and CHEP and the most cost-

effective and easiest solution will be to securely e-mail the file on an

automatically scheduled basis.

Bearing in mind confidentiality and sensitivity of the data that will be sent on a

daily basis, I had to consider the key security requirements whilst transmitting

the data over to CHEP. I have requested for a secure email account from CCA

which will be used primarily for data transmission to CHEP.

Ideally, the account requires Transport Layer Security (TLS) to encrypt all

outgoing mail. TLS is the most widely used and developed protocol for sending

e-mails and web traffic content (Rescorla, 2012). In the instance of my

application the focus was on ensuring the email was sent securely. This was a

high priority when considering security and confidentiality of information. The

security of incoming mail is negligible as this e-mail account will not be used to

receive any e-mails. Any e-mails received into this account will be automatically

deleted, this condition will be set by default by CCA mail administrators.

Project Development

A significant amount of time had been spent completing the initial and

preliminary stages of this project due to the fact that a large amount of

investigation work into the current business process had been required. To begin

with I was required to understand the current shipping process at CCA and

attempt to identify an area that needed to be improved. I found that this process

Page | 23

was extremely complicated. CCA is an extremely large business organisation and

understanding their entire business operations process was a difficult task.

My project required me to meet with several stakeholders within the CCA

business to understand their requirements and the limitations within the

business and their relative business processes. I was in contact with CHEP and

their Senior Manager, who managed their Business Solutions and Assets. My

progress consisted of me conducting interviews with Distribution Centre

employees and Outwards Goods employees. As part of my continual learning

and development process within CCA, I had created the initial stage of my

project within two main SAP environments:

 SAP ECC Production - PAR

 SAP ECC Development - DAR

Within these two environments I created and developed an extract report, with

the use of the SAP Tables described within the Solution Design chapter of this

report. The following screenshots represent the latest and final revision of my

progress in the Client-specific TEST_DAR environment within SAP. All the

following screenshots as displayed below have been updated due to the change

of my solution design and requirements of my Python Application.

Whilst creating the extract report interface, I was initially required to link 5

tables to create a relationship, which was then changed to 6 tables and resulted

SQVI Report Extraction Table Joins

Page | 24

in the required information becoming available for extraction. The above

screenshot demonstrates this respectively.

These fields were linked to create the required table relationship they are listed

as follows:

 TKNUM: Shipment Number = VTTK – VTTP

 VBELN: Delivery / Subsequent sales and distribution document = VTTP –

VBFA

 VBELN: Sales Document = VBFA – VBAK

 KUNNR: Sold-to-party / Customer Number = VBAK – KNA1

 TDLNR: Number of Forwarding Agent / Account Number of Vendor = VTTK

– LFA1

The next step in the process required me to research and learn about the

required fields I would need to use within the SAP extraction report and my

Python application. This was done in order to gather all the correct information

as required by CHEP’s EDI and Portfolio Plus. This process took me a significant

amount of time as there are hundreds of fields within the 6 chosen tables of

which all were not used or required for this stage of development. The fields that

I was initially required to use to extract information are as follows:

 Driver 1

 Vehicle

 Actual date of check-in

 Total # of PAL

 Shipment Number

 Subsequent item of an SD document

 Customer Purchase order number

 Name 1

 House number and street

Page | 25

I have been required to adjust the tables and fields required as per my above

screenshot. This is due to the differences that lay with my thinking and the

actual information that was required. I had initially programmed my Python

application to map each shipment that had been received from CCA’s SAP

system to the customer of which the goods were being delivered to. I.E.

University of Auckland, I would then retrieve the CHEP ID for the University and

assign the pallets to the customer.

Unfortunately, as I had later realised after talking to my industry mentor I had

unfortunately programmed the application with my understanding of the

business process which was slightly incorrect. As I was using dummy data I was

unaware that each CCA customer was not assigned a CHEP Global ID and each

customer was not liable for the CHEP pallets.

However the responsibility and ownership of the pallets being delivered to small-

medium size customers came down to the logistics company that would deliver

the pallets. I.E. University of Auckland may not have a Global CHEP ID but goods

from CCA are delivered to the University via the logistics company Tolls, the

ownership of pallets are theoretically meant to be transferred to Tolls and not

the University of Auckland. I came across this finding when I had one of my

regular meetings with my industry mentor Jet and Outwards Good Distribution

manager Storm, who manages the Outwards goods process for CCA.

As part of my initial development process I had created the layout and set the

required fields into an information extract report template. The fields as listed in

the following screenshot do not have the same names as listed by SAP due to

the requirement input from CHEP’s EDI. The fields have been modified and by

me to accommodate CHEP’s requirements.

The fields listed above have been retrieved from

 the 6 listed tables within SAP

Page | 26

The above screenshot demonstrates the latest and final revision of my SAP

extraction headers, the SAP extraction report has been updated significantly

when compared to the initial development stages of this project.

To limit the duplication of shipments and to ensure that I met the requirement of

data integrity and validity, I have created and set a default filter on the

subsequent item field. With the filter on as default, data is not duplicated and is

not listed multiple times within the results. This modification was required as

entries for multiple types of items were listed with the same quantity of pallets.

The total number of pallets field represents the pallet quantity for the entire

order. The following screenshot displays the interface created that can be run in

an automated extraction of results every 5 minutes. I will discuss briefly other

options as an alternative to regular batch jobs of 5 minutes.

As an example, I created an extraction report for 10 individual shipments.

Shipment numbers 50241399 – 50241409 were entered into a select query.

Whilst I designed and created my Python application which serves as the

solution to CCA’s current business problem, I had been using data that was

extremely dense. The data that was being used as the import file for my Python

Shipment Numbers 50241399 – 50241409 to be selected

SAP Extraction Report Headers

Page | 27

application consisted of over 27,000 rows of information also known as

shipments. The amount of information within that data file represents a typical

day of shipments and orders for Coca-Cola Amatil NZ.

It is important to note that the extraction query can be configured to run

automatically on a daily basis or hourly basis. Essentially, it is up to CCA and

CHEP’s discretion as to how often they would like to process the shipment

information. Additionally, the longer CCA wait to process the transfer of

shipments it will subsequently result in CCA being liable for those pallets for a

longer period of time.

Furthermore, as a result of the above Shipment Number conditions that were

entered into the shipment number range, the following screenshot demonstrates

the results that were produced by my SAP extract report interface.

The above screenshot of information can, for instance, be automatically created

and extracted by a batch job approximately every 5 minutes. This time can be

set when the transaction SE93 is used to modify my current SQVI Report. With

changes made to the processing of the report, the report can be extracted

automatically which can serve as an update for the newest shipments that have

been dispatched.

Shipment Numbers 50241399 – 50241409 extraction results

Page | 28

Additionally, this extraction can also be done without a timer, whereby the batch

job is run only when new shipments are detected and that information is then

parsed to my Python application. Although, with parameters as aforementioned,

several changes will be required to be made to my extraction report query which

is run on CCA’s SAP system.

The information from my SAP report is exported and is then read by my Python

application. As previously mentioned my Python application has been

programmed to work with the customers and vendors details that have been

provided to me by CCA. These details are then used in conjunction with the

extracted SAP CSV file.

Page | 29

Python Application Flow

The above diagram demonstrates the operation stages of my Python Application

at an abstract level. The initial design of this Python Application was different in

the sense that there were only two input sources whereas there are now three

input sources. The input sources - Shipment Information, Customer Information

and Vendor Information now replaces my previous design which did not account

Python Application Flow Diagram

Page | 30

for the Vendors. My Python Application operates in a manner which can be

described as a process that has seven main stages.

Stage 1

In this stage of the process the majority of required information is exported from

CCA’s SAP system. The information exported from the SAP system is defined by

my extraction query I had completed in the earlier stages of this project. An

overview of the SAP development section of this project can be found within the

Solution Design section of this report. The shipment information that had been

extracted from the CCA SAP system accounts for one third of the information

required in stage 2. The extracted query from SAP is imported into my Python

Application as a .CSV file and the fields of information extracted via SAP from

stage 1 are as follows with their uses for this project:

 Reference – CCA’s reference that acts as a Primary Key.

 Other Reference – Additional information that is often provided by

customers such as Progressive Enterprises. This information is generally a

Purchase Order number.

 Shipment Date – Date shipment was dispatched from CCA Distribution

Centre.

 Pallet Quantity – Number of pallets that were dispatched. The liability of

these pallets are then transferred to either a Customer or Vendor

(Shipping Company).

 Purchasing Customer – Customer that will pay for the goods supplied by

CCA. I.e. Progressive Enterprises.

 Purchasing Customer Address – Customer’s delivery address.

 Delivery – Unique delivery number is allocated to each shipment.

 Sold-To-Party – CCA’s unique identifier for each Customer.

 Transportation Planning Point – Route/Area that the goods will be

delivered to.

 Forwarding Agent – CCA’s unique identifier for each Vendor (Shipping

Company).

 Processing Time – Processing time for each shipment.

 Shipment Type – Type of shipment, this was a very important field as

there were multiple shipment types and only there are only a few that are

applicable to my project.

Page | 31

 Shipping Company – Company that delivers the goods.

 Subsequent Item – Required field to limit duplicate results.

Stage 2

As described in stage 1 the information that had been extracted from SAP via

the use of my extraction query did not account for all the information required.

The next set of information that was required was the Customer Information.

This set of information contains data such as CCA’s unique identifier for each

Customer, CCA’s unique identifier for each Vendor and the Customers Global

CHEP ID as displayed in the Customer Information table below. The Customer

Information table is imported into my Python application as a .CSV file which

allows CCA to modify the contents of the file at any time given the authorisation.

For example, if new customers are added or deleted, the .CSV file must be

updated to reflect those changes.

Another set of information was also required which was the Forwarding

Agent/Vendor/Shipping company information along with the Transportation

Planning Point and Global CHEP ID. As with the Customer Information table the

Vendor Information table is also imported into my Python application as a .CSV

file. The information from these two tables allow me to link shipments from

stage 1’s import and modify the information in a manner which allows me to

vadiate the data correctly for CCA and CHEP. The above screenshot represents

the typical layout of a Customer Information file.

Customer Information file

Page | 32

The above screenshot represents the typical layout of the Vendor Information

file. To conclude stage 2, all the information as aforementioned is imported into

the Python Application. The next step within the process will be described in the

next stage.

Stage 3

The flow of information in this stage is simplified and comes down to the use of

multiple CSV file reader instances and the SQLite database. Within this stage of

the process my Python application reads all the information as aforementioned in

the previous stages and then inserts the information into the respective tables

within the SQLite database. Multiple instances of the CSV reader were used to do

so which then allowed my application to import the Shipment Information,

Customer Information and Vendor Information into the CCA.db database file and

into their respective tables.

Stage 4

This stage proved to be the most time-consuming and crucial stage in regards to

the design and development aspect of the project. Details in regards to the

development of this stage will be discussed within the next section of this report.

In this section I will give an overview of the information flow at this stage of the

flow diagram. In this stage my decision-making logic process occurs, this

process can be thought of a set of ‘questions’. These ‘questions’ allow my Python

application to essentially decide how the shipment records should be

manipulated. The data is then manipulated at this stage in accordance with the

results from the decision-making logic process. In order to meet CCA and CHEP’s

Vendor Information file

Page | 33

requirements to effectively make-use of the EDI solution, I had to ensure my

logic process adhered strictly to their requirements and guidelines.

Furthermore, shipment information that was previously imported and inserted

into the SQLite database and tables is now modified and deleted according to set

conditions, this will also be discussed in-depth in the next section of this report.

Shipments within this stage are linked to Customers, Vendors, Transport Routes

and Shipment Types which then allows the program to determine with who must

accept liability / take ownership of the pallets.

Stage 5

Within this stage of the process, the export of manipulated data from my Python

application occurs. The data is read from my CCA.db database and is then

written to a file “CHEP_EXPORT.csv” which adheres to CHEP’s requirements.

Stage 6

Once the file has been created from Stage 5, my Python application then emails

the file using multiples modules, I will discuss this further within the next section

of this report. The file “CHEP_EXPORT.csv” is emailed to a pre-configured email

address provided by CHEP that monitors all incoming files from my Python

application.

Stage 7

Within this stage of the process it is CHEP’s liability to ensure the file received

from stage 6 has been processed correctly. The exported file from my Python

application is imported into CHEP’s SAP system which then allows the data to be

parsed through to the CHEP’s Portfolio Plus software. This Portfolio Plus software

allows CCA and CHEP representatives to view and make changes to the shipment

data if necessary.

Python Application Development

Now I move onto the major programming aspect of my project. Extending from

the previous section, this is whereby the main development and main logic

operations occur. Firstly I began programming my Python application with the

use of the following Python modules:

 SQLITE3 – SQLite 3 Library that implements the SQL database engine

(SQLite.org, n.d.)

Page | 34

 CSV – Comma Separated Values Module (Python.org, 2015)

 XLRD – Library to extract data from Microsoft Excel spreadsheet files

(Python.org, 2015)

 OS – Miscellaneous operating system interfaces (Python.org, 2015)

 SYS – System-specific parameters and functions (Python.org, 2015)

These aforementioned modules allowed me to begin programming in respect

to creating the database and tables required for the operation of my Python

Application. It is important to note that a large variety of modules were used,

this can be seen within the source code files. To adhere to the requirements

of my design and the requirements set in-place for the project I created the

following tables:

 CCASHIPMENTS

 CCACUSTOMERS

 CCAOUTLETS

 CHEPINFO

 CHEPEXPORT

 TEMP

The following table shows the fields that are allocated to each SQL Table.

SQL Table Allocated Fields

CCASHIPMENTS

 REFERENCE

 OTHER_REFERENCE

 SHIPMENT_DATE

 PALLET_COUNT

 CUST

 CUST_ADDRESS

 DELIVERY_NUM

 SOLD_TO

 TPPT

 FWDING_AGENT

 PROC_TIME

 SHIP_TYPE

 SHIP_COMP

Page | 35

 SUBNO

CCACUSTOMERS

 SAP_FWDING

 TPPT

 CUSTCHEP_ID

CCAOUTLETS

 OUTLET

 SAP_FWDING

 OUTLETCHEP_ID

CHEPINFO

 LINENO

 REFERENCE

 OTHER_REFERENCE

 SHIPMENT_DATE

 PALLET_COUNT

 CUST

 CUSTOMER_SAP

 CUSTCHEP_ID

 PROC_TIME

CHEPEXPORT

 LINE_TYPE

 RECORD_NUM

 DOCKET_NUMBER

 SENDER

 RECEIVER

 DOD

 DOR

 EFD

 REF1

 REF2

 MATERIAL

 QUANTITY

TEMP

 LINE_TYPE

 DOCKET_NUMBER

 DATE

 SENDER

 MATERIAL

Page | 36

These fields as shown in the table above were required for me to design my

Python application whereby the logic processing occurred effectively. I utilised

the input file from my SAP generated report, CCA’s Customer and Vendor files

and inserted the data into the SQL Tables and the fields associated with each

field. Whilst designing the structure of my Python application I decided to keep

the main functions separate. Thus, I developed my Python Application in the

following manner:

 Main.py

 generateDatabase.py

 pythonEmailer.py

Therefore the generation of the database in the instance of my application is

imported by main.py and as a result ‘CCA.db’ and the SQL tables are all

generated within the generateDatabase.py script of my application. A snippet of

code demonstrating the CCASHIPMENTS table creation is shown below.

1. conn.execute (''''' CREATE TABLE CCASHIPMENTS
2. (REFERENCE LONG NOT NULL,
3. OTHER_REFERENCE TEXT,
4. SHIPMENT_DATE TEXT NOT NULL,
5. PALLET_COUNT INT NOT NULL,
6. CUST CHAR(50) NOT NULL,
7. CUST_ADDRESS CHAR(50) NOT NULL,
8. DELIVERY_NUM NOT NULL,
9. SOLD_TO NUM NOT NULL,
10. TPPT NOT NULL,
11. FWDING_AGENT NOT NULL,
12. PROC_TIME NOT NULL,
13. SHIP_TYPE NOT NULL,
14. SHIP_COMP NOT NULL,
15. SUBSNO INT NOT NULL);''')

Moreover, the generation of the SQL Tables and the SQL database was only one

part of the application. Once I had the tables and database generation running

correctly, I had the following information displayed as per my design

requirements.

Page | 37

The above screen will be presented every time a user runs the application, this is

due to the fact that I was unable to get permission to run the SAP SE93

transaction and automate the report extraction from SAP every 5 minutes. I will

discuss this further in the Future Work section of this report. It is important to

note that with one simple line of code the application can be modified to store all

the fields of data without having to clear the tables when the program runs.

The next step in my development process was to write additional code to allow

for the reading of Shipment, Customer and Vendor Information which would be

subsequently inserted into my SQLite Database and tables. I did this by using

the CSV Reader (Python.org, 2015), the following code demonstrates that there

are three instances of the CSV reader. Each instance of the CSV reader reads

each file respectively from a defined location which should be stored securely.

1. data =csv.reader(open(r'C:\Users\Avish\Desktop\CCA Python 1\Python I
NPUT\shipments9.csv', 'r'))

2. data2 =csv.reader(open(r'C:\Users\Avish\Desktop\CCA Python 1\Python
INPUT\vendors.csv', 'r'))

3. data3 =csv.reader(open(r'C:\Users\Avish\Desktop\CCA Python 1\Python
INPUT\customers.csv', 'r'))

Once my Python application is deployed into the production environment at the

CCA worksite, a network location will then be accessible to only my Python

application. Therefore the above directories can then be changed to a secure

network location to where these files are stored and maintained by an

authorised CCA employee. This would most likely be an employee who works

within the Distribution Centre for CCA.

Once I had tested that the files were being read correctly I was then required to

insert all the imported information from the Shipments, Vendors and Customers

CSV files. Therefore as per my Python application design I defined the “import

sqlite3” module at the top of my Main.py class and subsequently used the

“sqlite3.connect” method to connect to my CCA.db database. I deemed that the

Page | 38

database connection was successful as I did not encounter any issues once I had

written the code for the connection. The manner in which a connection is

established was defined on the DB-API 2.0 interface webpage (Python.org,

2015). As I had followed the guidelines as defined on the webpage I had to

ensure I did not develop code in a manner which would be considered as

insecure.

Moreover, as I went further into the development process, I had to extend my

knowledge in Python and as a result I was experimenting and testing my code

simultaneously. Thus, before I could continue developing the rest of my Python

application, I was required to understand how the data would be inserted into

my database. This data as previously mentioned was read by the multiple

instances of CSV reader, I then had to learn how the SQLite’s ‘executemany’

function operated within Python (Python.org, 2015).

Once I had referred to the online documentation, I was then aware of how to

code my Python application to insert the information from the CSV reader

instances and into my SQLite tables. The data insertion for the shipments is

shown below with a snippet of code, this demonstrates that the table

CCASHIPMENTS is used to store the shipments which were extracted from the

earlier development of my SAP extraction report. I also ensured that I followed

good naming convention throughout the development process.

1. conn.executemany("INSERT INTO CCASHIPMENTS(REFERENCE, OTHER_REFERENC
E, SHIPMENT_DATE, PALLET_COUNT, CUST, CUST_ADDRESS, DELIVERY_NUM, SO
LD_TO, TPPT, FWDING_AGENT, PROC_TIME, SHIP_TYPE, SHIP_COMP, SUBSNO)
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)", data)

Subsequently within my development phase, I also used the SQLite ‘select’

function to select all the data and also used the ‘cursor’ object which allowed me

to print each row of data that was read by the CSV Reader.

Once all the shipment information extracted from SAP, Customer and Vendor

Information provided to me by CCA was inserted into the respective tables in my

SQLite database. The next step within my development process was to start the

manipulation process of the imported data.

Page | 39

The following screen is displayed once the Shipment, Vendor and Customer

information has been imported and inserted successfully into the SQLite

database and tables.

The first set of data that required manipulation was from the CCASHIPMENTS

table, this data had to be filtered down to certain Shipment Types. The irrelevant

shipment types had to be deleted from the database. Thus as part of my

business process learning phase at CCA I determined which shipment types were

not required for the Auckland Distribution Centre. Shipment types that were to

be deleted from the dataset are as follows:

 Y009

 Y012

 Y013

 Y017

These aforementioned shipment types had to be deleted from the database as I

learnt they were not applicable for the Auckland Distribution centre. The result of

keeping those shipments could be detrimental to the CCA pallet transfer process.

The following snippet of code demonstrates the manner in which I deleted the

aforementioned shipment types.

1. cursor = conn.execute("DELETE FROM CCASHIPMENTS where SHIP_TYPE =='Y
009' OR SHIP_TYPE =='Y012' OR SHIP_TYPE =='Y013' OR SHIP_TYPE =='Y01
7'")

The following screenshot demonstrates the screen which is shown to the user

when the irrelevant shipment types are deleted.

I had initially gone down the wrong path as my understanding of the business

process and CHEP pallet transfer process was incorrect. My understanding of the

process inferred that each CCA Customer was assigned a CHEP ID which

Page | 40

unfortunately was not the case. To avoid large programming catastrophes I tried

to ensure I met regularly with the Distribution Centre team, they would advise

me if my development progress at the time was heading in the right direction or

not. Therefore as part of my learning process I then came to the understanding

that my Python application logic in which the Shipments were linked to

Customers was incorrect.

More importantly, I was then required to further my learning within the CCA’s

business environment and understand the manner in which shipment data

should be linked to each Customer/Outlet and the newly introduced concept of a

Vendor. I was unaware at the time that Vendors also known as the shipping

agents would take liability of the pallets when goods were dispatched to smaller

customers of CCA such as a local dairy.

I will now go in-depth into the logic that was then required to link and

manipulate shipment data for customers and vendors of CCA. The data

manipulation within this phase was continually adjusted as my understanding of

the pallet transfer process grew.

1. cursor = conn.execute("SELECT ship.REFERENCE, ship.OTHER_REFERENCE,
ship.SHIPMENT_DATE, ship.PALLET_COUNT,ship.CUST, ship.CUST_ADDRESS,
vend.CUSTCHEP_ID, ship.PROC_TIME from CCASHIPMENTS ship, CCAVENDORS
vend where (ship.TPPT = vend.TPPT) AND (ship.FWDING_AGENT = vend.SAP
_FWDING) group by REFERENCE")

The above snippet of code demonstrates the manner in which the CCA

Shipments are linked to CCA Vendors. Fields taken from CCASHIPMENTS are

joined to fields from CCAVENDORS only in the instance where the Transportation

Planning Point from CCASHIPMENTS matches the Transportation Planning Point

from the CCAVENDORS table and where the Forwarding Agent (Vendor) from

CCASHIPMENTS matches the Forwarding Agent from CCAVENDORS. These

results are then grouped by Reference.

The first instance of linking and manipulating Vendor information to the

shipments can be best explained with an example. For example if CCA dispatch

products to “Company A” via the Forwarding agent (Vendor) “Tolls” this snippet

of code allows the Python application to determine the shipments in which the

liability of pallets are directly transferred to “Tolls” instead of the CCA

Page | 41

Customer/Outlet. The liability of these pallets is determined by the Forwarding

agent (Vendor) and the Transportation Planning Point that is extracted from

SAP. Therefore when both conditions in the snippet of code are met the liability

of pallets for the respective shipments are transferred to “Tolls” the Forwarding

Agent/Vendor.

Once this query had been executed I used the cursor object to insert all the

applicable shipments into the CHEPINFO table. This is demonstrated as per

below in the snippet of code.

1. conn.executemany("INSERT INTO CHEPINFO(REFERENCE, OTHER_REFERENCE, S
HIPMENT_DATE, PALLET_COUNT, CUST, CUSTOMER_SAP, CUSTCHEP_ID, PROC_TI
ME) VALUES (?, ?, ?, ?, ?, ?, ?, ?)", cursor)

The use of the CHEPINFO table was required as I needed to use the defined

Autoincrement function (SQLite.org, n.d.). This function was required as I

needed a line number for each shipment when the information was transferred

to the CHEPEXPORT table. The use of Autoincrement would automatically store a

line number for each row of information inserted into the table, the line number

would also automatically increment when another row of information was added.

I did not directly use the Autoincrement function within the CHEPEXPORT table

as the line numbers needed to be adjusted.

This therefore was a better option for me to use instead of defining and creating

a method that calculates line numbers. Although due to the use of the

Autoincrement function the CPU usage was increased but I believed this was a

fair trade off as the number of rows that would be inserted into CHEPINFO would

not be extremely large (SQLite.org, n.d.).

The next stage in the development process required me to perform the second

instance of linking shipments and manipulating data for Outlets also known as

CCA’s Customers. This stage also included the insertion into the CHEPINFO table.

The following snippet of code demonstrated the linking and manipulation process

that was required.

Page | 42

1. cursor2 = conn.execute("SELECT ship.REFERENCE, ship.OTHER_REFERENCE,
 ship.SHIPMENT_DATE, ship.PALLET_COUNT, ship.CUST, ship.CUST_ADDRESS
, outlet.OUTLETCHEP_ID, ship.PROC_TIME from CCASHIPMENTS ship, CCAOU
TLETS outlet where (ship.FWDING_AGENT = outlet.SAP_FWDING) AND (ship
.SOLD_TO = outlet.OUTLET) group by REFERENCE")

2. conn.executemany("INSERT INTO CHEPINFO(REFERENCE, OTHER_REFERENCE, S
HIPMENT_DATE, PALLET_COUNT, CUST, CUSTOMER_SAP, CUSTCHEP_ID, PROC_TI
ME) VALUES (?, ?, ?, ?, ?, ?, ?, ?)", cursor2)

The above snippet of code demonstrated the manner in which the CCA

shipments are linked to CCA Outlets/Customers. Fields that are obtained from

CCASHIPMENTS are joined to fields from CCAOUTLETS only in the instance

where the Forwarding Agent from CCASHIPMENTS matches the Forwarding

Agent from CCAOUTLETS and also where the Sold-To-Party from

CCASHIPMENTS matches the Outlet/Customer from CCAOUTLETS. These results

are then also grouped by Reference to limit the possibility of duplicate

shipments. Line 2 of the above snippet of code demonstrates the manner in

which the selected shipments from line 1 are inserted into CHEPINFO via the use

of object cursor2.

As shown above with the second instance of linking and data manipulation for

CCA Outlets/Customers, this was done in an effort to ensure the pallet liability

was transferred to the customer instead of the forwarding agent listed within the

shipment record.

The second instance of linking Customer/Outlet Information to the Shipments

can also be best explained with an example. For example if CCA dispatch

products to “Company B” via the Forwarding agent (Vendor) “Mainfreight” the

liability of pallets in this instance will not be transferred to the Forwarding Agent

as the Outlet also known as the CCA Customer is a large enough company that

takes liability of the pallets and therefore the pallets are then transferred to

them.

Page | 43

Once the decision-making process had been executed in regards to the shipment

linking and data manipulation for both the Customers and Vendors, the following

screen is displayed accordingly.

The CHEPINFO table was required as the majority of data as required by CHEP

was within this table, but the key difference between CHEPINFO and

CHEPEXPORT was that the CHEPINFO data was not formatted to CHEP’s

requirements. The use of CHEPINFO was required as I needed to perform

manual changes to the value of the Autoincrement function mentioned earlier.

Once the changes were applied the final version of shipment data was then

inserted into CHEPEXPORT. The next stage of the development process for the

Python application was to prepare the information which needed to be exported

to CHEP according to their requirements. The following tables demonstrate the

data layout requirements as per CHEP’s EDI solution. I had to conform exactly to

these requirements whilst I was writing the code for my Python application. If

these requirements were not met CHEP would advise me that the shipment data

sent to them would not be accepted.

Header Records:

Number Field Example Mandatory

1 Header Indicator H Y

2 Recordnum 5 Y

3 RecordCount 24 Y

4 SendDate 01102015 Y

5 ProgramName CDKTF Y

6 ProgramVersion 1.1 Y

7 InformerGLID 6412345678 Y

8 CountryCode 64 Y

9 CustomerFileRef AAZA956141 Y

Page | 44

Movement Records:

Field # Field Example Mandatory

1 LineType F/D/C Y

2 RecordNum 3 Y

3 Docketnumber AAZZ00000001A Y

4 Sender 6412345678 Y

5 Receiver 6400987654 Y

6 DOD 01102015 Y

7 DOR 01102015 Y

8 EFD 01102015 Y

9 REF1 Reference 1 Y

10 REF2 Other Reference Y

11 MATERIAL 16001 Y

12 QUANTITY 10 Y

The Header and Movement records acted as a strict guideline whilst I was

preparing the CHEP_EXPORT.csv file. Prior to the generation of the export file I

was required to ensure that the headers as requested by CHEP were inserted

prior to the export file being emailed. The reason for using a CHEPEXPORT table

was due to the fact that were multiple fields that were not required for CHEP and

therefore this new CHEPEXPORT table only contained the relevant data for CHEP.

All unnecessary data was not imported into this table.

Moreover, as per CHEP’s EDI requirements I was required to obtain the relevant

and required details from CHEP which identifies CCA NZ within CHEP’s SAP

environment. Information from the Header Records table were obtained from

CHEP, excluding Recordnum and RecordCount. These two fields are determined

and filled in by my Python Application. Another reason as to why I was required

to have a separate table for CHEP data extraction was because I was required to

calculate in advance the number of records that were to be sent to CHEP. This

RecordCount value was to be inserted into the header of the CHEP_EXPORT.csv

file.

Page | 45

The RecordCount as required by CHEP was calculated by my Python application

in the following manner:

1. cursor =conn.execute ("SELECT count(*) from CHEPINFO")
2. recordCount =cursor.fetchone();
3. recordCount2 =int(' '.join(map(str,recordCount)))
4. recordCount2 =recordCount2 + 2;

I was required to use the SQL count aggregate function as this allowed me to

calculate the number of rows within the CHEPINFO table. The number of rows in

this table directly correlated to the number of shipment records that needed to

be sent to CHEP. Whilst I was writing the code to perform such a calculation, I

was faced with a tuple related error. For example if I ran the following

statement:

1. print(recordCount)

I was presented with a number in this format “(29,)”. Due to the tuple being

present I was required to remove the brackets and the comma. Essentially I was

required to convert the tuple into an integer. The recordCount variable as shown

above stores the calculated total number of rows within the CHEPEXPORT table.

The second variable recordCount2 was required as I needed to include the 2

header rows that are inserted into each CHEP_EXPORT.csv file. recordCount2

value was therefore inclusive of the two header rows.

Due to several issues I was facing with inserting variables concurrently with

information from another table I decided to use a TEMP table to store the

variables. The variables stored within this TEMP table were variables such as,

lineType, docketNumber, date, informerGLID and materialType. The

aforementioned variables were requirements set by CHEP and therefore when I

was required to enter all the manipulated shipments into the CHEPEXPORT table

I concurrently extracted the information from the TEMP table which included the

two header rows.

Moreover, for simplicity I ensured that the CHEPEXPORT table was formatted

according to CHEP’s requirements. This allowed me to perform a full read of my

table to generate the CSV file as required by CHEP. I will now discuss the next

major component of my Python application. The following snippet of code

demonstrates the manner in which my Python application read the rows of

Page | 46

shipment information from the CHEPEXPORT table and subsequently wrote it to

the CHEP_EXPORT.csv file.

1. with sqlite3.connect("CCA.db") as connection:
2. file =open("CHEP_EXPORT.csv", "w", newline='')
3. csvWriter =csv.writer(file)
4. connection =cursor.execute("select * from CHEPEXPORT")
5. info =connection.fetchall()
6.
7. csvWriter.writerows(info)
8. file.close()

The following screenshot demonstrates the screen in which the user will be

shown once the export file has been generated.

The aforementioned snippet of code operates in the following manner. Firstly my

Python application was required to use SQLite3 to connect to the database file

that was created during the initial stages. This database file was generated

within the generateDatabase.py package as ‘CCA.db’. Line 2 indicates the file

that is to be created which is the CHEP_EXPORT.csv and the parameter “w”

indicating ‘write’. Line 4 allows the Python application to read the CHEPEXPORT

table from the CCA.db and concurrently select all rows of information from the

table. The fetchall() function as part of the cursor then allows the Python

application to fetch all the rows from the CHEPEXPORT table and of which is then

written into the file as shown on line 7.

During the development process I was having several issues whereby the

pythonEmailer.py was emailing the CHEP_EXPORT.csv file as a blank file

although the file had already been written. After thoroughly reviewing Python

documentation online I came to the realization that it was because my Python

application still had the CHEP_EXPORT.csv file open and was therefore unable to

attach the file with the contents. I required a single piece of code to fix this

issue, this is shown on line 8 – file.close(). The following screenshot

demonstrates the contents of the extracted CHEP_EXPORT.csv file, this file is

sent to CHEP and is processed within the CHEP SAP system of which then parses

the information into Portfolio Plus.

Page | 47

Furthermore, I will now discuss the final aspect of my Python Application which

is the pythonEmailer.py. This aspect of the project took a considerable amount

of time also as there were several aspects that continuously required

adjustment. By the end of the testing and modification phase during

development of the pythonEmailer.py I had sent an excess of 250 emails.

The pythonEmailer initially contained several issues. The main issues I

encountered are as follows:

 Failed logon to email server

 No email was being sent

 No attachment within email

 Corrupted attachment when sent

To get past a few of these key issues I spent a considerable amount of time

fixing every issue whilst experimenting and using different MIME handling

Python Application Output -

 CHEP_EXPORT.csv file example

Page | 48

packages. Several issues were related to the MIME types and the encoders I had

used. Therefore I continuously refined my pythonEmailer package to suit to my

requirements which subsequently then resulted in attaching the CSV file to an

email. The following screenshot demonstrates the screen in which the user is

shown once the email has been generated and sent.

Furthermore, I ensured that I met CCA’s requirements of this project by

successfully demonstrating the operation of my Python application to my

industry mentor. I also obtained the CHEP’s test EDI email address whereby the

email sent from my Python application that contained the CHEP_EXPORT.csv file

was classed as approved and therefore meant that my Python application

development was a success. I have also ensured that my Python application has

met the brief requirements that were initially provided to me by CCA.

Future Work

I believe that this project should be taken further in regards to additional

development by a CCA representative or contractor. There are a few aspects

which I believe should be changed and unfortunately due to a series of factors

such as time, brief requirements, University requirements, CCA requirements

and CHEP requirements I was unable to implement certain features. Certain

characteristics such as the manner in which the shipment information is

transferred to CHEP should be modified. I was required to use CHEP’s EDI as

they have no alternative solution of parsing data to them. Therefore the security

in this sense should be improved from their side. The solution as developed by

me allowed my Python application to send extracted shipment information from

my database to CHEP. In this section of the report I will discuss improvements in

which I believe will further enhance this developed solution.

GUI – Graphical User Interface

To further develop on-top of my existing Python Application I recommend for

programmers to develop a Graphical User Interface (GUI). A GUI will allow for

CCA Distribution Centre employees to use icons or visual cues to interact with

my Python application. A GUI can be considered as a human-computer interface

Page | 49

and it essentially allows humans to interact with a computer (Linfo.org, 2004).

As my Python application is based off a CLI known as a command line interface

(Linfo.org, 2004) a GUI will be a significant addition and should definitely be

considered as part of the Future Work.

The implementation of a GUI and additional features can allow CCA Distribution

Centre employees to have a pallet transfer count total for set periods. At present

a total is given for each instance in which the program runs. For example, a CCA

employee can select a custom time period and view the total number of pallets

transferred for that period if this additional feature is implemented.

Therefore at the end of month when re-conciliation of pallets occur, an employee

can simply select that period and view the total number of pallets that have

been transferred to Vendors and CCA Customers. If my Python application is

deployed at present the Distribution Centre employees will be able to view the

results of the automatic processing and extraction of data via the Portfolio Plus

interface which belongs to CHEP.

Furthermore, another additional feature that can be implemented into my

Python application is the search function, this function can be added within the

GUI which will allow employees to view a Customer/Vendor details and make

changes to the data only if the employee is authorised to do so. Additionally, the

employee will also be able to view the total number of pallets that have been

transferred to that Customer / Vendor over a custom time period.

Over 50% of programming code is now dedicated towards the user interface

(Galitz, 2007). Although the use of a command line interface is not a problem in

my Python application as the intent for the solution was to purely provide

automation of shipment data transfer to CHEP, an implemented GUI can

significantly benefit the Python application. I propose that a Direct Manipulation

interface be implemented within my Python application. This will allow for the

user to interact with the cues and elements displayed on a screen in-front of

them (Galitz, 2007).

The advantages that can be provided by the use of a Direct Manipulation GUI are

as follows (Galitz, 2007):

 Faster Learning

Page | 50

 Easier Remembering

 Exploits visual/spatial cues

 Easy error recovery

 Provides context

 Immediate feedback

Therefore I would recommend that a GUI is implemented onto the next revision

of my Python application. I have advised my industry mentor of my proposed

future works and he has assured me that CCA will try and attempt to further

develop this application with resources provided by CCA Australia.

SQL Server

In regards to the full scale New Zealand deployment of my Python Application

for all CCA Distribution Centres, I believe that it is crucial that the database is

upgraded to use SQL Server instead of SQLite. A few main benefits that

Microsoft SQL Server provides are as follows (Microsoft, 2015):

 Mission-critical performance

 Faster insights on any data

 Platform for hybrid cloud

 Proven, predictable performance

SQLite is an extremely light cross platform library and I believe that my Python

application could process a larger amount of shipments if SQL Server was used

in conjunction with Python. If my Python application was deployed to all CCA

distribution centres certain changes would be required to be made to my Python

application. SQL Server 2014 is much more powerful when compared to SQLite

and therefore is deemed to be a more suitable solution when deployed to all NZ

distribution centres. SQL Server when compared to SQLite also provides

Immediate Consistency this is whereby methods are in place to ensure

consistency is met whilst operating in a distributed system. (DB-Engines, 2015)

Furthermore, another benefit that must be considered when comparing SQL

Server to SQLite is that Server-side scripts can be deployed (DB-Engines, 2015).

The use of Server-side scripts will enable CCA to use stored procedures if

required (DB-Engines, 2015). Therefore if there was a critical shipment that was

Page | 51

required to be processed immediately, the use of stored procedure could allow

this to occur.

Virtual Desktop Infrastructure

The deployment of the Python application can also be done on Virtual Desktop

infrastructure (VDI). I propose that as part of the Future Work, CCA should

deploy the Python application on a virtual desktop which essentially allows an

operating system to operate via the use of server hardware (PCWorld, 2012).

Therefore the security in this sense is improved as the use of VDI’s enforce strict

policies as to who can and cannot access the virtual desktop. The local in-

memory storage and processing can all be performed on a virtual desktop. This

also in-turn reduces the possibility of a rogue user gaining access and making

changes to a local machine. The Python application could possibly be operating

at that time which means that pallet transfers could be interrupted and modified

in a malicious manner.

Additional Security Measures

I believe that as part of the future work aspect for my Python application

additional security measures can be incorporated into my solution at a later

date. Preferably before my Python application is deployed to all CCA Distribution

Centres. Although the solution I have created meets CCA’s and CHEP’s

requirements, I believe that more can be done in the future in regards to the

security aspect of this project. Focussing on the security mechanisms was not a

primary concern for me as I was told by my industry mentor to focus on the

design and functionality aspect of my Python application.

In this section of the report I will discuss what can be done on the Python

application to further increase the application security. We introduce the concept

Resin which is a system that is operated within a language runtime such as the

Python interpreter (Yip, 2009). Resin provides policy objects, programmers can

then use these objects to specify assertion code. Essentially Resin is based off

the concept whereby application security can be improved with the use of Data

Flow insertions. The runtime that is implemented as part of Resin, checks data

flow assertions in the manner whereby policy objects are propagated along with

the data (Yip, 2009). Filter objects are then invoked when i.e. my Python

application attempts to write the CSV file (Yip, 2009).

Page | 52

The use of Resin can allow future developers of my Python application to ensure

the application follows the correct procedure of coding. Although I followed good

coding practices, it is equally important that this is checked. Resin has been

stated by the authors Alexander et al. that it can be integrated with existing

application code. This benefit therefore can subsequently related back to my

Python application that has already been developed by me. It is important to

note that due to a faulty data flow, vulnerabilities can be severely exploited. In

the case of my Python application, a check against the possibility of a SQL

Injection and Cross-site scripting vulnerability would be a good area to start in

when additional security mechanisms are considered.

Furthermore, the SQL Injection and Cross-site scripting vulnerability has been

described in relation to a Web Application, if this Python application was used

within a Web application it would be crucial to evaluate my Python application

against vulnerabilities that may exist in such an application. SQL injection is

when the user’s input flows through to the SQL query string (Yip, 2009). The

result of this occurring can be detrimental if an attacker managed to hack the

files that are read by my application and also successfully use SQL injection to

insert malicious data into my SQL tables and database.

Different strategies in regards to the use of Resin are discussed to address the

vulnerabilities as aforementioned. The main strategy operates in the following

manner:

 Two policy object classes defined. UntrustedData and SQLSanitized (Yip,

2009)

 Untrusted input data is annotated with the use of the UntrustedData policy

(Yip, 2009)

 SQLSanitized object is attached to sanitized data (Yip, 2009)

 Policy objects are checked on each SQL query. Therefore if the query as

entered by the user contains any characters from the UntrustedData

policy filter will throw an exception (Yip, 2009).

Being able to address cross-scripting vulnerabilities operates in a similar

manner. HTMLSanitized is therefore used instead of the SQLSanitized policy

object.

Page | 53

Additionally, the use of data flow assertions and policy objects can be

implemented on-top of my Python application which will hopefully provide a

greater sense of security for the application. Moreover, the Python application

will also be less susceptible to vulnerabilities such as SQL injection and cross-site

scripting.

In addition to the GUI section of the future work, I recommend that a login

screen is implemented within my Python application. This will allow CCA to

control who has access to the application. Although the system will be

implemented within a secure environment, we must take into account the

possibility of a malicious user who attacks the network systems within CCA and

attempts to change the programming and decision-making logic within my

application. The result of this occurring could potentially equal in a loss of

monetary terms whereby less pallets are transferred out from CCA’s CHEP

account. Therefore CCA will then be liable for each individual pallet that has left

the Distribution Centre but of which has not been accounted for due to the

infection of the Python application.

Furthermore, extending off the idea of a login screen. I also believe that login

security should also be implemented in a manner that utilises two-factor

authentication. This operates by using two individual procedures to login into a

system. The most common method used in relation to this two-factor

authentication is via the use of a password and a smart card (Yang, 2008).

The smart card based approach is as stated by Yang et al. one of the most

commonly used and most convenient methods of two-factor authentication.

Therefore in this scenario where two-factor authentication is deployed, there is a

server (S) that is deployed along with a client (A) (Yang, 2008).

Two-factor authentication can be best described in the scenario whereby a CCA

representative whom can be represented as client (A), is required to login into

the system and view the Customer and Vendor information that is stored within

a database. They would be typically required to enter their username and

password within the login screen, if these credentials are correct they will then

be required to insert their smart-card. Client A has the identity IDA and will

therefore be allowed to login once the server S verifies the users identity.

Page | 54

We are assuming that the smart-card has not been stolen/deactivated. It is

important to note that the client also known as the CCA representative will only

be allowed to login once both factors of authentication have been verified. This

prevents a malicious user from logging in with stolen credentials. An example of

a smart-card is the eToken PRO Smart card. This smart-card is a certificate

based strong authentication solution (Gemalto, 2015). Smart-cards that have

been proven to be secure should be employed in the second factor of a two-

factor authentication procedure.

In relation to increasing the security measures indirectly and directly related to

my program CCA should also ensure the Customer, Vendor and Shipment

information is stored securely and has file access control implemented. This

should be done in a manner whereby only the Python application and

administrator has access to these files. File access control will allow the control

of who can view, modify and delete the data that is vital to the operation of my

program.

Overall within the future works section of this report, I have highlighted certain

areas that should be looked into, and also areas where resources should be

applied to further strengthen and develop the application.

Conclusion

This report has focussed on the business problem, design and development of

my BTech Project also known as my Python application and the CHEP pallet

management system. I have now completed my findings as discussed within the

report. The solution developed by me focuses on the solving the current

business issue where shipment and pallet information is manually keyed in into

an external CHEP Portfolio Plus system.

Furthermore, as a result of this manual process several shipments were

forgotten about or were incorrectly entered. With the use of my Python

application this entire process is completely automated and requires no user-

intervention. If shipment information was not entered into the CHEP Portfolio

Plus software it resulted in CCA being liable for hundreds and thousands of

dollars of ‘lost’ pallets. My developed solution significantly reduces this loss in

both monetary terms and physical pallet terms.

Page | 55

Moreover, I have learnt a large variety of skills that I will find extremely valuable

in regards to my future career aspects. I have also improved my project and

time management skills which I believe is fundamental when developing a

solution. During the course of my project I was required to continuously organise

meetings and schedule tasks with representatives within CCA. I believe this

enabled me to further grow my verbal and written skillset. I was also required to

meet constant deadlines which ensured that I had to upskill my knowledge in

Python, SAP ABAP and SQLite in a time efficient manner. The knowledge and

corporate experience I have gained during the course of this project is deemed

invaluable and I am extremely grateful to have been given this opportunity.

Bibliography

Bettaway. (n.d.). Pallets Network. Retrieved from Bettaway:

https://www.bettaway.com/baw/palletsNetwork

CHEP. (n.d.). Wooden Pallets. Retrieved from CHEP:

http://www.chep.com/pallets/wooden_pallets/

Coca-Cola Amatil. (n.d.). About US. Retrieved from Coca-Cola Amatil:

https://ccamatil.co.nz/about-cca/key-facts/

DB-Engines. (2015). System Properties Comparison Microsoft SQL Server vs.

SQLite. Retrieved from DB-Engines: http://db-

engines.com/en/system/Microsoft+SQL+Server%3BSQLite

EDI Basics. (n.d.). What is EDI? Retrieved from EDI Basics:

http://www.edibasics.com/what-is-edi/

Galitz, W. O. (2007). The Essential Guide to User Interface Design: An

Introduction to GUI Design Principles and Techniques. Indonesia: Wiley

Publishing.

Gemalto. (2015). Certificate-based PKI Smart Cards. Retrieved from Safenet-

Inc: http://www.safenet-inc.com/multi-factor-

authentication/authenticators/pki-smart-cards/

Guo, P. (2014, July 7). Python is Now the Most Popular Introuctiory Teaching

Language at Top US Universities. Retrieved from Association for

Computing Machinery: http://cacm.acm.org/blogs/blog-cacm/176450-

Page | 56

python-is-now-the-most-popular-introductory-teaching-language-at-top-

us-universities/fulltext

Linfo.org. (2004, October). GUI Definition. Retrieved from Linfo.org:

http://www.linfo.org/gui.html

Martin, R. C. (2000). Design Principles and Design Patterns. Robert C. Martin.

Microsoft. (2009). Software Architecture and Design. Microsoft.

Microsoft. (2015). SQL Server 2015. Retrieved from Microsoft.com:

http://www.microsoft.com/en-us/server-cloud/products/sql-server/

Moxon, P. (2014). SAP ABAP Programming For Beginners. Retrieved from

Udemy: https://www.udemy.com/sap-abap-programming-for-beginners/

PCWorld. (2012). The Pros and Cons of Using Virtual Desktop Infrastructure.

Retrieved from PCWorld.com:

http://www.pcworld.com/article/252314/the_pros_and_cons_of_using_vir

tual_desktop_infrastructure.html

Python.org. (2015, February 26). CSV File Reading and Writing. Retrieved from

Python.org: https://docs.python.org/3/library/csv.html

Python.org. (2015, February 26). DB-API 2.0 interface for SQLite databases.

Retrieved from Python.org: https://docs.python.org/3/library/sqlite3.html

Python.org. (2015, February 26). Generating MIME documents. Retrieved from

Python.org: https://docs.python.org/3/library/email.generator.html

Python.org. (2015, May 23). Miscellaneous operating system interfaces.

Retrieved from Python.org: https://docs.python.org/2/library/os.html

Python.org. (2015, May 23). System-specific parameters and functions.

Retrieved from Python.org: https://docs.python.org/2/library/sys.html

Rescorla, E. a. (2012). Datagram transport layer security version 1.2.

Rose, M. (2013). What is SAP? Retrieved from Tech Target:

http://searchsap.techtarget.com/definition/SAP

SQLite.org. (n.d.). About SQLite. Retrieved from SQLite.org:

https://www.sqlite.org/about.html

Page | 57

SQLite.org. (n.d.). Autoincrement In SQLite. Retrieved from SQLite.org:

https://www.sqlite.org/autoinc.html

The Python Programming Language. (1997, 12 09). Retrieved from University of

Michigan:

http://groups.engin.umd.umich.edu/CIS/course.des/cis400/python/pytho

n.html

TrackIt. (n.d.). Asset Tracking and Management. Retrieved from TrackIt:

http://www.trackit.co.nz/product/Asset_Management.aspx

WiseTrack. (n.d.). Asset Tracking Software. Retrieved from WiseTrack:

http://www.wisetrack.com/asset-tracking-software/

Yang, G. a. (2008). Two-factor mutual authentication based on smart cards and

passwords. Journal of Computer and System Sciences, 1160-1172.

Yip, A. a. (2009). Improving application security with data flow assertions.

Proceedings of the ACM SIGOPS 22nd symposium on Operating systems

principles, (pp. 291-304).

