BTech 451 2015
Final Report

Management System

Contents

ADSErACT .ttt 2
DY 1= 11 =T P 3
o <To 0] = 3
AUTNOE L 3
JANor=To (<] o a1 (oY U] 0 L<T Y/ <o] PP 3

| g To [0S o VA =T o o] = PP 3
BTech. Information Technology Coordinatorccoviiiiiiiiii e 3
AcCKNOWIEAgEMENES e e 3
B 2 LT o] 1 21 0=1 1 | V2P 3
MOTIVATIONS Lo 4
My Project in @ NUtShello e 5
Feasibility ANalYSiS ... 6
Programming LanQUaAgES . ..ueiuueiriiiieitirniinntsssssssssssesssesasssasssasssessnessnssns 6
SAP AB AP e 7
P NON S L e 8
5]] PP 9
Chosen Programming LangQuUagesouviieiiiiiiiiiiiiiineiine e inessnesanssnnesnnssnnsanens 11
2] = Lt =T B o o PP 13
WiseTrack ASSet TraCKing ...uiieiiiiieiie i r e e e raneaneaaneans 13
Bettaway Pallet Systems ... 14
TrackIt ASset TraCKing ..ovvviieiiiiii i erne s 16
1o 1U [(0] o I 0 T=T=] [| o 17
Project Development ... e 22
Python Application FIOWcuiiiiiiii i e aaes 29
RS 1= T < 30

RS 1= T < 31

1S 1= 16 1 32

S G i e 33
RS 1= T < 33
RS 1= T 33
Python Application Development ..o e 33
FUBUIE W OIK ottt e ettt e e e a e e eaneeaes 48
GUI - Graphical User Interfacecovviiiiiii i 48
1L @ IS =Y V= 50
Virtual Desktop INfrastruCture....ccoviiii i e 51
Additional SeCUrity MEaSUIESiiiiii it i s e ane e aaeeaans 51
(©o] o Lo [1= o o PP 54
=] 0] ToTe | =] o] 0 12 P 55
Abstract

I undertook a project for Coca-Cola Amatil ("CCA") and created a solution to
improve their current Commonwealth Handling Equipment Pool (*CHEP”) pallet
management process. Pallet liabilities were manually entered into the system by
CCA Distribution Centre employees and as a result certain scenarios existed in-
which pallet transfers did not occur. Therefore, CCA were liable for these
‘unaccounted’ pallets. The main goal of my project was to automate and

correctly determine the pallet liability transfer process of pallets.

The first half of my report focusses on the business issue and possible
alternative solutions that already exist within the marketplace. I also proposed
changes for CCA’s current system and business processes that included the use
an intermediary system. In the second half of my report I focus on the steps I
took to designing and developing an intermediary solution also known as my
Python application to address CCA and CHEP’s requirements. My developed
intermediary solution significantly improves business processes and also avoids

the governance that is set in place by Coca-Cola Amatil Australia.

Page | 2

Disclaimer

Please note that this report is confidential and contains sensitive data belonging
to Coca-Cola Amatil New Zealand and Coca-Cola Amatil Australia. Please ensure
this report is not distributed without the consent of the author and Coca-Cola
Amatil.

People

Author
Avish Kapadia

Academic Supervisor

Dr. Giovanni Russello - University of Auckland

Industry Mentors

Jet Wu - Coca-Cola Amatil New Zealand

Darren Ruston - Coca-Cola Amatil New Zealand

BTech. Information Technology Coordinator

Dr. Sathiamoorthy Manoharan - University of Auckland

Acknowledgements

I would like to thank the following people for their tremendous continual support
whilst I undertake my Bachelor of Technology Degree and BTech 451 Project.

My parents: Anil & Darshana Kapadia.

Academic Supervisor: Dr. Giovanni Russello.

Industry Mentors: Jet Wu and Darren Ruston.

BTech. Information Technology Coordinator: (Mano) Dr. Sathiamoorthy

Manoharan.

The Company

Coca-Cola Amatil New Zealand are the licenced bottlers of the Coca-Cola
Company in New Zealand. CCA produce an extensive range of well-known

products such as L&P, Coca-Cola, Coca-Cola Zero, Coca-Cola Diet, Powerade and

Page | 3

Keri Juice. CCA has been in operation since the early 1900’s and currently
employs well over 1000 employees in New Zealand alone. Within New Zealand
CCA has five production facilities located across Auckland, Putaruru and
Christchurch (Coca-Cola Amatil, n.d.).

CCA have a significant impact on the local economy. Recently CCA spent 50
million NZD upgrading two CCA facilities within Auckland and Christchurch to
support the blow-fill technology. In 2008 CCA spent 80 million NZD to create
their new and advanced distribution centre in Auckland (Coca-Cola Amatil, n.d.).
With these investments and upgrades, customers are provided with a high

quality product within in timely manner.

Motivations

The goal of my project was to improve the efficiencies around CCA’s current
CHEP pallet movement. CHEP pallets are distinct blue coloured pallets that have
standardised sizes for distribution within New Zealand. CHEP pallets are a key
requirement when supplying goods to supermarkets and major organisations.
These pallets meet rigorous standards and undergo compliance audits (CHEP,
n.d.). The current CHEP pooling model is designed for pallets to be repaired and
reused. CHEP reuses damaged pallets in an effort to reduce landfill. CHEP pallets

provide many benefits, such as:

e Compatibility with existing supply chain infrastructure (CHEP, n.d.)

e Greater efficiencies during transport and storage (CHEP, n.d.)

¢ High pallet quality and consistency via CHEP’s worldwide network (CHEP,
n.d.)

e Load stability and reduced product damage (CHEP, n.d.)

The current CHEP pallet reconciliation process is extremely time consuming and
takes approximately four days to complete. In addition to the four days required,
the pallet reconciliation process requires the assistance of 3 additional internal
systems to balance CHEP pallets nationwide. Thus, the logistics team have
requested me to complete the process improvement to include customer pallet

movements.

Page | 4

Furthermore, the CHEP pallet management process is complex and manual and
these processes leave the business open to potential losses with pallets being
given to customers without receipts. CHEP holds CCA accountable for these
pallets and for inaccuracies in pallet inventory balances, which CCA are
financially accountable for. Pallets can be dispatched to distribution centres
throughout New Zealand, customer’s nationwide or shipping companies.
Shipping companies / Vendors such as Toll also distribute CHEP pallets, in this
scenario the shipping companies take ownership of the accountabilities

associated with the pallets.

At present, all information is manually keyed into CHEP Portfolio Plus, which is
CHEP’s pallet accounting system that tracks pallet movement and manages
transfers of pallet liability. The issue within the business process that I had
identified was the lack of accountability and the data integrity factors not being
met. Information can be simply forgotten about, which then results in the pallets
not being transferred to a customer. In these mentioned scenarios, CCA is left
accountable for these pallets which have not been recorded but have already
been transferred to a customer/shipping agent. This issue at present costs CCA

hundreds of thousands of dollars per year.

My Project in a Nutshell

To identify and create a solution for CCA, I had to initially investigate and
address the current issue at CCA. This required a thorough understanding of
CCA’s current business processes and the ability to identify areas of weakness.
Once I understood the extremely complicated business process in regards to the
inwards and outwards goods process, I was able to determine areas that could
be significantly improved. When I initially began my project all shipping
information was manually entered into CHEP Portfolio Plus software which tracks

the pallet movement and manages transfers.

The solution I have designed and created is an application that will transfer and
modify set fields of shipment information from CCA’s current SAP system into
Portfolio Plus. In addition to the aforementioned tasks, my Python application

will also be mapping customers to shipments and making changes to the

Page | 5

information as required. Though there are possible alternative methods that do
not require the use of an intermediary system, I am unable to proceed with
them due to the resourcing and governance that have been set by Coca-Cola
Amatil Australia. Coca-Cola Amatil Australia have put strict conditions in place
which prohibit me from making multiple changes to the existing software and

business workplace infrastructure.

Furthermore, the application created removes these barriers as the application
allows for greater flexibility and control. Flexibility is achieved in the sense that
the application can be altered by myself or my nominated CCA representative at
any time. I do not require clearance from CCA Australia to make adjustments to
the application. As I created this solution for CCA, I had to ensure that I met
CCA'’s goals of achieving data integrity of information and zero discrepancies
between actual stocktake count of pallets and reported amount of pallets on
hand.

Feasibility Analysis

Programming Languages

As part of the design process and research required for my BTech project, I
researched and evaluated the programming languages that would be suitable for
the creation and implementation of my solution for CCA. The primary purpose of
this application was to have information parsed from CCA’s SAP system which is
based on the SAP ABAP language — extracted from my created query within SAP
and parsed into my Pallet management application for manipulation. The
extracted information is then manipulated in accordance with the requirements
set by CHEP. In addition to the requirements set by CHEP I ensured that CCA’s
business processes are met and pallet transfers are completed successfully.
They were not to be performed in a manner which meant that CCA’s customers

were transferred pallets that they were not meant to be held accountable for.

Several fields of extracted information has been adjusted prior to being
forwarded onto CHEP’s Portfolio Plus application which accounts for a key
requirement of my project. The transfer was done via the use of CHEP’s EDI
system. My Python application transfers all the shipment orders and related

information to the CHEP EDI system which then feeds the information into the

Page | 6

Portfolio Plus software that the CCA logistics team can then view and modify if

required.

Therefore, bearing the requirements of the application in mind, my research
below covers three major programming platforms. These languages are SAP
Advanced Business Application Programming (ABAP), Python and SQLite. After
concluding my assessment study on these languages, I chose the most essential
languages that I must know sufficiently in order to be able to complete the

design and creation phase of my Python application.

Due to the requirements of my project, I was required to use different platforms
to complete my project to a high quality standard. Bearing in mind the quality
demanded of this project, I ensured that I met the functionality requirements
that align with CCA’s business requirements. Below is a description of each

language researched, which allowed me to create my solution for CCA.

SAP ABAP

SAP Advanced Business Application Programming (ABAP) is a programming
language that is used by large organisations worldwide. It essentially runs their
critical SAP business systems. SAP is the world’s largest inter-enterprise
software company and the world’s fourth-largest independent software supplier
(Rose, 2013). The SAP applications provide capabilities to manage finances,
asset accounting, cost accounting, production operations and materials,
personnel, plants and archived documents (Rose, 2013). This programming
language also includes the use of logical databases, which I will use thoroughly

within this project.

The use of SAP was required for the first phase of my project as the majority of
the required information that was needed for CHEP Portfolio Plus was contained
within CCA’s SAP system. Throughout the design and creation of my Python
application I was required to educate myself in order to have the required skill
level to program and create extraction reports of the required shipment,
customer and vendor information. Since the project with CCA begun, I strived to
study the basics of SAP and learn how to use the required SAP transactions.

Page | 7

I had then learnt the required basics from my industry mentor Jet and I had also
used an online SAP ABAP Programming for Beginners Udemy course (Moxon,
2014). Currently within the New Zealand and Australia CCA sites, SAP is used
heavily for the critical business systems such as orders, shipping and inventory
management. Therefore the use of SAP is a significantly large factor within my

project.

The importance of knowing how SAP operated was crucial to this project as the
EDI system I used also connected onto CHEP’s SAP system. The information
from CHEP’s SAP system as previously mentioned was then parsed on
automatically via the back-end of CHEP onto their respective Portfolio Plus
software of which was then allowed for authorised CHEP and CCA employees to

access the data and transactions that had been recorded into the system.

Python3

Python is a relatively new language which was released back in February 1991
by Guido Van Rossum who was the primary designer of the language (The
Python Programming Language, 1997).

Many of Python’s original/initial features originated from the ABC language. ABC
had certain problems that Guido Van Rossum wanted to correct. Moreover,
certain features were kept and taken from ABC. One of Guido’s primary goals
was to create a scripting language that was generally extensible (The Python
Programming Language, 1997).

The following are the significant features included with Python:

¢ Object-oriented programming language

¢ High level dynamic data types and classes

¢ Combination of remarkable power with clear syntax
e Several interfaces to system calls and libraries

e Extensible in C and C++

Python has been noted as highly suitable for rapid prototyping of complex
applications and this is of significant advantage to me. It is important to note
that this enabled me to show progress to my stakeholders at CCA and to my

university supervisor. Python is a language that is used to connect multiple

Page | 8

sources of information together and allow for the automation of shipment
transactions to be transferred from CCA to CHEP.

Python is the main programming language that I used within my solution as I
was required to develop a solution to address my brief within a timely manner
and also to address the requirements of future modifiability. Additionally, I chose
Python as I believe it outweighs Java’s advantages for the purpose of my
solution. As of July 2014, the Python programming language is the most popular
language for teaching introductory computer science at the top-ranked U.S.
departments (Guo, 2014).

Python allowed me to program an application that is light-weight and runs
efficiently with the use of the several libraries that are included within Python.
Thus, I decided to perform my initial research on Python rather than Java.
Python was significantly more efficient and a simpler language to understand
and create an application in, in comparison to Java. An equally important factor
to note is that the Python application works heavily with .csv formats and at
present Python has an excellent .csv module built-in which has allowed me to
extract and modify the information at ease (Python.org, 2015). The use of the
.csv module has been closely tied in with the SQLite module, which manages the
SQLite database in Python (Python.org, 2015).

Another essential module that I used within Python is the email.generator
module that generates MIME documents (Python.org, 2015). This module has

been used within my solution towards the final stage of the process.

Concluding with my Python research, I believe that the Python programming
language has provided me with the right tools and modules to complete the
main coding and aspect of the project for CCA New Zealand.

SQLite

It is defined as an in-process library that implements a self-contained, server-
less, zero-configuration transactional SQL database engine (SQLite.org, n.d.). An
important aspect to be noted with SQLite is that it is listed within the public
domain and is free for use including the commercial sector. This was an

important aspect for me to consider as once my application is used commercially

Page | 9

I believe that it would be bound automatically against such clauses. Therefore it
being allowed to be used within the commercial sector for free was also a key
point I kept in mind. SQLite is the most widely developed database in the world

(SQLite.org, n.d.). Organisations that currently use SQLite are:

e Adobe

e Airbus

e Apple

e Dropbox
e Mozilla

e Google

e Microsoft
e Python
e Skype

All the above listed organisations including many other high profile organisations
use SQLite in some way. SQLite is an embedded SQL database engine that does
not use a separate server process which enables the application to be

significantly ‘lighter’.

Ensuring that my Python application was a ‘light’ application allowed me to
compute somewhat high-resource tasks without too much of load bearing on the
CPU. SQLite was a great choice for my project as a complete SQL database with
multiple tables, indices, triggers and views can be saved into a single disk file
(SQLite.org, n.d.). The database within SQLite is a cross-platform which ensures
that if in the future CCA wish to copy the database between different systems,
such as migrating from a 32-bit to 64-bit system, then it is therefore a
possibility.

The library for SQLite at present is significantly compact, the library with all the
features enabled results in a size of less than 500 kilobytes. It is important to
note that the size of the library would be dependent on the platform and
compiler organization settings (SQLite.org, n.d.). The size of this library alone
demonstrates the agility and compactness of such a platform and is therefore a
popular database engine choice amongst many individuals and organisations

around the world. SQLite runs faster as more memory is allocated to it.

Page | 10

According to sqlite.org, SQLite is carefully tested prior to each individual release
and has a reputation for having a high level of reliability (SQLite.org, n.d.). This
was an extremely important concern for my project as I must ensure that the
database does not crash or have any software related issues. Although my
application will initially run within the TEST_DAR environment at CCA, I had to
ensure that my Python application did not have any bugs before it is released
into the Production Environment. Devastating effects can occur for the
Production and Distribution plant for CCA New Zealand if the application was to
go offline.

Chosen Programming Languages
As a result of my research into SAP ABAP, Python3 and SQLite (Version 3) I had

concluded that I was to use a combination of all three languages to create an
optimized and efficient solution for CCA. Each individual component within my
solution was be created to the highest of standards. Robert Martin considered
software as rotting design when the following five symptoms where present
(Martin, 2000):

¢ Rigidity — In this symptom, software would be extremely difficult to
change when required. A single change within a system would result in
several undesired changes in other linked modules. When a software has
such a symptom, many companies are hesitant to allow their software

engineers to work on the program to make changes.

e Fragility — This symptom is closely linked with rigidity. With this rotting
desigh symptom, the software is easily broken in multiple places whilst a
change is being performed within another area of the software. Many
companies also then become hesitant to allow changes to the software.
Robert Martin stated “As the fragility becomes worse, the probability of

breakage increases with time” (Martin, 2000).

e Immobility — This relates to the inability of being able to use software
from other projects or parts within the same project. Software engineers

may attempt to reuse software from other projects but due to the

Page | 11

complexity and extra ‘baggage’ the engineers may decide to re-write the

module instead of reusing the module.

e Viscosity of the Design - This is defined as while making a change, many
ways can preserve the design of software and others do not preserve the
design. Essentially, they can be classified as hacks to the software. It is

easier to do the wrong thing than do the right thing (Martin, 2000).

e Viscosity of the Environment - The issue with this symptom is where the
development environment is slow and inefficient (Martin, 2000). Compile
time may take an excessive amount of time and software engineers may
be required to change parts of code that do not require the compiling of

the entire code.

I have tried to ensure that the five symptoms mentioned above have been
avoided at all costs to ensure that my Python application is of the highest quality
of standards and runs efficiently. Whilst I programmed my application, I ensured
that I had sufficient in-line notation to allow future developers to make changes

as and if required by CCA.

To ensure I achieved my goal of developing a cost-effective, responsive, efficient
and well-designed application, I followed these key design practices (Microsoft,
2009):

e Keep design patterns consistent within each layer
e Do not duplicate functionality within an application
e Prefer composition to inheritance

e Establish a coding style and naming convention

e Maintain system quality

e Consider the operation of the application

Page | 12

Related Work

WiseTrack Asset Tracking

Currently there are similar technologies that are used within the world in relation
to tracking assets. From the research that I conducted, I was unable to find
exact solutions that would be fit for the requirements of CCA. Current solutions
include general asset tracking that require the use of RFID Tags. This option was
not suitable for a company such as CCA as the pallets that require tracking are
not the property of CCA, thus physical changes cannot be implemented to the

pallets to allow for tracking.

In addition, inserting a physical RFID tag per pallet was clearly not feasible, on
average 40,000 pallets are sent out of the Auckland Distribution Centre per
month. Each one of these pallets will not be returned to CCA as these pallets are
transferred to the customers and shipping companies accordingly. Once again
this proves that adding a chip to each one of these pallets is not a feasible

option.

Another point to consider with RFID tracking of each pallet is the practicality
concept. Each individual customer of CCA would not install and upgrade their
technologies to suit the tracking pallet requirements for CCA. This responsibility
does not come down to the customers of CCA. An option to somewhat solve this
current issue is WiseTrack’s solution which is a company that provides RFID

tracking of assets (WiseTrack, n.d.).

WiseTrack was built using the Microsoft Structure and uses Microsoft SQL. The
WiseTrack software combined with the use of WiseTrack’s Antennas and

equipment help deliver a solution to their clients and customers.

This option provided by WiseTrack was once again not feasible for CCA due to
the costs required and large diverse range of CCA customers within New
Zealand. Although the more cost-effective solution of Barcode Labelling is
available for customers of WiseTrack, I deemed this unsuitable due to the

following reasons:

e Not Practical

Page | 13

e Not Cost-effective
e Not Viable for all CCA Customers
e Prone to sticker being damaged during transit

After analysing WiseTrack’s solution in-depth, I had concluded that the solution
available by WiseTrack is not a practical and cost-effective solution for CCA. It is
important to note that their developed solution is primarily for companies who

ship internally within multiple distribution and shipping centres.

Although CCA ship within multiple warehouses within New Zealand, their major
consignments are sent to customers and via the use of shipping containers. As a
result of this, CCA is unable to resolve their issue by integrating a pallet tracking

system within their warehouses only.

Bettaway Pallet Systems

This pallet inventory management system known as the Bettaway Pallet System
was similar to the technology I was implementing for CCA. The current pallet
management in accordance with CCA business processes are managed by CHEP
- the manufacturer and supplier of the CHEP pallets. All pallet orders and
requests are sent to CHEP who allocate the requested number of pallets and
deliver them to CCA’s delivery location. The delivery location of the ordered

pallets are one of five nationwide distribution centres.

Bettaway have developed a solution that is currently deployed within the United
States and Canada, the solution provides pallets to customers from one of 200
pallet yards (Bettaway, n.d.). Bettaway’s solution is primarily a dispatch and
management system that looks to improve current pallet distribution within the
United States and Canada. Bettaway state that customers can save up to 35%
whilst using their platform and service. This is compared to the traditional

methods of purchase and discard methods of pallets (Bettaway, n.d.).

The use of Bettaway leans significantly more towards the supply-chain process
where end-users must contact Bettaway to organise pallet retrieval. Whereas
with CHEP, pallets are transferred to the customer’s organisation who can then

use those pallets to ship inventory to other vendors or back to CCA. Bettaway

Page | 14

also manages repair and reissue of pallets, which, although it is similar, is not

the same as CHEP. CHEP will not dispatch faulty pallets to their clients and if a
client is to damage a CHEP pallet, they are liable to pay for a total replacement
of that pallet. The following diagram represents the Bettaway current pallet

management process.

1. Supply

Software analyzes pallet orders to optimize
options for clients.,

2. Retrieve

End users contact Bettaway to coordinate
pallet retrieval.

3. Repair

Service centers repair salvageable pallets,
which are placed back into inventory.

4, Reissue

Pallets are reissued for a lower cost than
new purchases, saving waste and money.

Image retrieved from:

https://www.bettaway.com/baw/palletsServices

Given the Bettaway process, I was unable to implement this solution for CCA
due to the fact this solution is based on general wooden pallets which are not
CHEP branded. These pallets do not undergo the same level of testing and
compliance tests as compared to CHEP pallets. Additionally this solution is also
restricted to clients based in the United States and Canada. I found that this
potential solution is unfeasible for the current business issues I face due to the
following reasons:

e Limited to United States and Canada

e Not adherent to requirement of CHEP pallets

¢ No consistent quality and strength of pallets

¢ Not feasible to implement solution for all New Zealand CCA customers

Page | 15

TrackIt Asset Tracking

TracklIt asset tracking is a New Zealand based company who specialise in asset
tracking with the use of RFID and GPS technology combined. Their software is a
web-based solution that enables customers to track, manage and monitor their
assets. This solution is similar to the previously mentioned WiseTrack solution,
which uses RFID tags and barcodes to enable a client to track their assets in
real-time (Tracklt, n.d.). The Tracklt solution allows a user to track their assets

and inventory in real time on any device or computer worldwide.

A collection of technologies are used such as RFID, barcodes and numerous
other methods. The management platform allows their clients to track the use of
their fixed assets. As mentioned previously, this form of solution was also not
feasible and practical for CCA as the Tracklt solution is primarily used for
tracking fixed assets. Each individual pallet cannot have such technology
implemented within them, the costs involved to do such a task would heavily

outweigh the proposed cost-savings of my solution.

Subsequently, this form of solution is suitable for a company of who transfer
their goods between multiple sites and will not dispose of the asset within one
shipment such as the transfer of a CHEP pallet. TrackIt provide a great solution
for clients who may require features such as the Real-Time tracking screen
(TracklIt, n.d.), but it is important to note that CCA did not require these

extensive features in regards to tracking a pallet.

TrackIt also provide site auditing, which is a critical feature that as a result of
my solution will allow CCA to audit their pallets much more accurately. My
implementation of this concept allows for a more accurate and quicker monthly
reconciliation process of the total number of pallets dispatched. After further
consideration and discussions with my CCA supervisors I was informed that they
wanted me to primarily focus on the automation of the shipment transactions
and that the auditing can be done on the Portfolio Plus end. In addition to the
current issue of pallet count discrepancies, CCA also faced the issue where pallet
stocktake is an extremely time-consuming and tedious task to complete. I used

the knowledge that I have learned from current similar technologies to develop

Page | 16

an optimal solution for CCA New Zealand whereby accurate information is fed
through to Portfolio Plus that allows for a better and more efficient manner in

which monthly audits can be undertaken.

Solution Design

My solution for CCA required the use of several platforms and technologies to
create a cost-effective and efficient solution, which can be heavily used on a
day-to-day basis within the CCA production environment. As with any project,
changes to the project continue to occur as the project progresses. Initially, I
had planned for my solution to be a sub-interface of CCA’s SAP system that
would collect and aggregate all the required fields of information. I have learnt
that, within a large business organisation, several requirements and constraints

are always present.

Due to resourcing and governance in-place by Coca-Cola Amatil Australia, I was
restricted to making environment changes to the production and development
SAP environments. The latest revision of my solution required me to create an
intermediary application that would receive the majority of information from the
current CCA SAP system. I was initially required to use five main tables and I
had designed the table join structure that had best matched CCA and CHEP’s
requirements. Unfortunately due to a misunderstanding of the manner in which
CHEP pallets were transferred, I had to then completely change the processing
logic of my Python application. Subsequently this meant I was required to pull
additional information through CCA’s SAP System. Thus, I then added a new
table which is the LFA1: Vendor Master. The 6 main tables I used to extract

information from CCA’s SAP system are as follows:

e VTTK: Shipment Header

e VTTP: Shipment Item

e VBFA: Sales Document Flow

e VBAK: Sales Document: Header Data

e KNA1: General Data in Customer Master
e LFA1l: Vendor Master (General Section)

Page | 17

I chose the above tables as this allowed me to join the necessary tables together
in order to link all the required fields of information together. Now that all the
required tables from which information had to be extracted from have been
chosen, the next step in the design process was to come up with a solution to

view and extract that information.

Subsequently, I had to create the table joins in SAP QuickViewer also known as
SQVI transaction code. Within this transaction of SAP, I created the required
layout of the information that was to be extracted from CCA’s SAP system.
Furthermore, I designed and generated a SQVI report, which included the
majority of fields. The report contents was parsed into my Python application
which handles all the incoming fields and appends set fields of information. As I
previously mentioned, certain fields was modified by my Python application to
suit the level of quality, accuracy and data integrity of information required by

CHEP’s Portfolio Plus application and CCA’s accounting requirements.

This technological layout and design enabled me to create the most efficient
system for CCA, within the resourcing and governance that had been implied by
CCA Australia. Once the report template was completed with the final layout
design. I was meant to be given the opportunity to convert the SQVI extract into
SE93 - Maintain Transaction Code, which would allow me to view the transaction
code and modify it further to allow for automatic batch extract movements every
5-7 minutes. But unfortunately, I had put in a request numerous times to access
the SE93 transaction and was subsequently denied due to the administrative
rights in place. I will mention which changes need to be implemented within the

future work section of this report.

The automatic scheduled run time of the batch job will be discussed in-depth
with CCA and CHEP to ensure that all information is present on CHEP’s Portfolio

Plus at any given time or day.

The scheduled batch job from SE93 with the set fields of information was
required to run as a scheduled task. In the latest scenario the output file can still
be extracted as a .csv file and parsed through to my Python Application as one

of the primary sources of input. I aimed to parse the output file from SE93 by

Page | 18

uploading it to a set location that my Python application can constantly read
from. This location will be located within the internal network of CCA. This file
will be imported by my Python application and will be used according to the
required input specifications by CHEP. Furthermore, my application makes
changes to the shipment information that is received from CCA’s SAP system

and in-turn makes the subsequent changes as required by CHEP.

The Python application also displays the total number of dispatched pallets at
during each runtime of the application. This information can be is printed onto
the command line screen of the application. This application will allow CCA for a
much greater, simpler and more efficient pallet transfer process. This in-turn
should allow for CCA to perform more accurate monthly reconciliations of all
pallets and shipments that have been dispatched from the New Zealand
Distribution Centres and Warehouses. Furthermore, CCA Distribution Centre
employees will not be required to manually enter in each shipment record into
the CHEP Portfolio Plus system as this will now be automated by my Python

application.

The Python application was initially required to match customer addresses from
SAP to a CHEP-recognised customer ID. This however was then changed to a
more complicated approach due to the way pallets were allocated to customers
and vendors, thus my application was required to match two different sets of
customers and vendors according to their Customer ID and Vendor ID
respectively including other fields of relevant information. I will talk about this in

detail shortly.

I had initially decided that this information will be accessed via the use of a data
dictionary. However I decided to go down another more feasible path of which I
will also describe shortly. The Python application has been designed to match
any other values required to ensure the aspect of data integrity and credibility is
met at all times. To maintain table data within Python I used SQLite to handle all
the tabular data. SQLite enabled me to also create tables whereby the
information from them was then extracted with the correct header and field

records.

Page | 19

Once my Python application completed performing all operations on the received
data from CCA’s SAP system, the Python application performed the required
modifications of which I will also go into detail shortly. The EDI - Electronic Data
Interchange process is used finally to parse the information onto CHEP’s SAP
system which in-turn is parsed through to CHEP'’s Portfolio Plus software. An EDI
is defined as computer-to-computer exchange of business documents in a
standard electronic format between business partners (EDI Basics, n.d.). The
business partners in this instance are Coca-Cola Amatil New Zealand and CHEP

New Zealand.

I used the EDI process to provide CCA with the following benefits:

e Increased volume of CCA Transactions

e Time savings

e Monetary savings

e Greater flexibility for employees

e Increased employee productivity

e Enables CCA information transfer directly to CHEP systems
e Data accuracy

e Data integrity

e Eliminates several paperwork processes

¢ Business streamlining

e Better reporting information

Electronic Data Interchange Solution for CCA:

- @S NG

_ —_——
&;%:L‘l :«’ My Solution CEHEF’ ;;LA' ;'

Electronic invoice sent to CCA

Page | 20

Furthermore, my Python application has been designed in a manner where the
output which needs to be sent to CHEP meets their approved document format.
This format includes the set fields of information as requested by CHEP. These
fields are required as CCA are responsible for reporting the movements of the
CHEP pallets. The pallets are transferred to Customers and Vendors of CCA. With
this reported information CHEP determines whom or which company the pallet
liability must be transferred to. For accurate pallet movement, each field must
be accurately reported to CHEP else CCA may be responsible for those
dispatched pallets. Seven movement record fields are required to successfully
log each movement. The fields are listed below with their respective

representation:

e Docket Number - Unique docket humber

e Sender ID - CCA’s sender ID

e Receiver ID - CCA’s customers CHEP ID

e Dates - Date of Dispatch (DOD), Date or Receipt (DOR) and Effective
Date (EFD)

e References - Sales Order, Purchase Order and Consignment Note

e Material - CHEP Equipment ID

e Quantity - Number of pallets

Once my Python application had composed the table with all the relevant fields
according to the criteria set by CCA and CHEP, the next stage in the process was
to compose the document in the approved format and layout for CHEP’s EDI.
Many conditions had to be met in order to successfully log a pallet movement.
These conditions are that the correct header records and movement records
must be recorded within each exported file. The following header records are

also required to successfully log a pallet movement:

e Header Indicator - Indicated by ‘H’

e Recordnum - Running total of the record/row

e RecordCount - Total records in file including header record
e SendDate - Date record sent

¢ ProgramName - Indicated by CDKTF

e ProgramVersion — CHEP Standard EDI Docket format version number

Page | 21

e InformerGLID - CHEP Assigned Customer GLID, this indicates CCA
location

e CountryCode - Indicated by 64, thus New Zealand

e CustomerFileRef - First 4 characters of the CCA allocated docket prefix
with an additional sequential counter. This is unique for each file that is
sent to CHEP.

The next step in the solution process was to parse the fully composed document
with the correct header records and correct field records into the CHEP EDI
which essentially parses the information through CHEP’s EDI and into Portfolio
Plus. I have discussed this in-depth with CCA and CHEP and the most cost-
effective and easiest solution will be to securely e-mail the file on an

automatically scheduled basis.

Bearing in mind confidentiality and sensitivity of the data that will be sent on a
daily basis, I had to consider the key security requirements whilst transmitting
the data over to CHEP. I have requested for a secure email account from CCA

which will be used primarily for data transmission to CHEP.

Ideally, the account requires Transport Layer Security (TLS) to encrypt all
outgoing mail. TLS is the most widely used and developed protocol for sending
e-mails and web traffic content (Rescorla, 2012). In the instance of my
application the focus was on ensuring the email was sent securely. This was a
high priority when considering security and confidentiality of information. The
security of incoming mail is negligible as this e-mail account will not be used to
receive any e-mails. Any e-mails received into this account will be automatically

deleted, this condition will be set by default by CCA mail administrators.

Project Development

A significant amount of time had been spent completing the initial and
preliminary stages of this project due to the fact that a large amount of
investigation work into the current business process had been required. To begin
with I was required to understand the current shipping process at CCA and

attempt to identify an area that needed to be improved. I found that this process

Page | 22

was extremely complicated. CCA is an extremely large business organisation and

understanding their entire business operations process was a difficult task.

My project required me to meet with several stakeholders within the CCA
business to understand their requirements and the limitations within the
business and their relative business processes. I was in contact with CHEP and
their Senior Manager, who managed their Business Solutions and Assets. My
progress consisted of me conducting interviews with Distribution Centre
employees and Outwards Goods employees. As part of my continual learning
and development process within CCA, I had created the initial stage of my

project within two main SAP environments:

e SAP ECC Production - PAR
e SAP ECC Development - DAR

Within these two environments I created and developed an extract report, with
the use of the SAP Tables described within the Solution Design chapter of this
report. The following screenshots represent the latest and final revision of my
progress in the Client-specific TEST_DAR environment within SAP. All the
following screenshots as displayed below have been updated due to the change

of my solution design and requirements of my Python Application.

QuiickViewer BTECHV® list design

ggjmn conditions et et
VTTK : Shipment Header VTTP : Shipment Item VBAK : Sales Document: Header Data KNAA ; General Data in Customer Master
[Technical Hame [Long Text [TechnicalLong Text Technical Ng Long Text [Technical Hame [Long Text [Technical Hame Long Text
Shipment Mumber - /T TKNUM Shioment Number ey Precading sales and distribution docu [= /F vEEN Sales Document - /T KUNNR Customer Numbes
5D document categny /T TPNUM Shioment item /f posny Preceding item of an 5D document ERDAT Date on Which Record Was C LANDL Country Kev
Shioment tve VBEIN Delivery S vean Subseouent sales and distibution do ERZET Entry time NAMEL Name 1
Transportation planning point TPRFO Htinerary of shipment items /f posnn Subseouent item of 2n SD documen ERNAM Name of Person whe Creste NAME2 Name 2
Name of Person whe Creste ERNAM Name of Person who Greated the Obiect /FVBTYP N Document category of subsequent & ANGDT Quotation/Inguiry s valid frc ORTOL City
Date on Which Record Was C ERDAT Date on Which Record Was Created RFMNG Referenced guanity in base unit of r ENDDT Date until which bid/auotatio PSTLZ Postal Code
Entry time ERZET Entv tme MEINS Base Unit of Measure AUDAT Document Date (Date Recsiy REGIO Region (State, Provinge, €
Name of Person Whe Chanas PKSTA There are Packed Deliveries Dependent on £ RFWRT Reference vahe VETYP 5D document categony SORTL Sort fiekd
Changed On KZHULFG Indicator: Defivery Items for HUs Generated WAERS Statistics cumency: TRVOG Transaction aroup STRAS House number and street
Time last change was made . v VETYP V Document cateaory of oreceding 5D AUART Sales Document Tvoe TELFL First telephone number
Leq determination PLMIN Ouantity is cabculated positively, nes AUGRU Order reason (reason for the TELFX Fax Number
Shipment completion type TAQUI 1D: MM-WM transfer onder confirmes GWLDT Wananty Date ¥CPOK Indicator: Is the acoount 2
Progessing control LrAth VendorHaster,(General Seouonl) ERDAT Date on Which Record Was Created SUBMI Collective number (SD) L Join | ADRNR Address
Servics Level |T"""-“' =2 |"""9 ==y ERZET Entry time LIFSK Delivery block (document he MCOD1 Search term for matcheods
Shipging type P UFNR Aczount Number of Vendar = MATNR Material Number FAKSK Billing block in SD document MCOD2 Search Term for Matchod
Shipping type of preliminany R Err EWART Movement Type (Inventory Mansg: NETWR Net Wahie of the Sales Orde McoD3 Sesrch term for matchoods
Shipping type of subsequent LT el EDART Reguirement type WAERK SD Docsment Cummency ANRED Titke
Leq Indicstor P ez PLART Planning type VKORG Sales Onganization AUFSD Cantral onder block for as
Shiging Conditions L E JEnED STUFE Lavel of the document flow record VTWEG Distribution Channel BAHNE Express Train Station
Shipment route S o LGNUM Wiarehouse Number | Warehouse Co SPART Division BAHNS Train Station
Container ID I =) AEDAT Changed On VKGRP Sales Group BEENR International location num
Exteral identfication 1 = e e FKTYP Billing cateqory VKBUR Sales Office BESNR International location num
Toen < F 0 Bk e E - BRGEW Gross weight - GSBER Business Ares - BEGRU Autherization Group
' Ll b ‘. N i + Ll b

SQVI Report Extraction Table Joins

Whilst creating the extract report interface, I was initially required to link 5

tables to create a relationship, which was then changed to 6 tables and resulted

Page | 23

in the required information becoming available for extraction. The above

screenshot demonstrates this respectively.

These fields were linked to create the required table relationship they are listed

as follows:

e TKNUM: Shipment Number = VTTK - VTTP

e VBELN: Delivery / Subsequent sales and distribution document = VTTP -
VBFA

e VBELN: Sales Document = VBFA - VBAK

e KUNNR: Sold-to-party / Customer Number = VBAK - KNA1

e TDLNR: Number of Forwarding Agent / Account Number of Vendor = VTTK
- LFA1

The next step in the process required me to research and learn about the
required fields I would need to use within the SAP extraction report and my
Python application. This was done in order to gather all the correct information
as required by CHEP’s EDI and Portfolio Plus. This process took me a significant
amount of time as there are hundreds of fields within the 6 chosen tables of
which all were not used or required for this stage of development. The fields that

I was initially required to use to extract information are as follows:

e Driver1

e Vehicle

e Actual date of check-in

o Total # of PAL

¢ Shipment Number

e Subsequent item of an SD document
e Customer Purchase order number

e Name 1l

e House number and street

Page | 24

Data fields List fields Selection Fields Technical Narme
~ ¥ Table join 14 4

v [l shipment Header 7 3 VTTK
v [l shipment Item 1 0 VTTP
b Vendor Master (General Section) 1 1] LFA1

r Sales Docurnent Flow 1 1] VBFA
b Sales Document: Header Data 2 1 VBAK
4 General Data in Customer Master 2] KMAL

The fields listed above have been retrieved from
the 6 listed tables within SAP

I have been required to adjust the tables and fields required as per my above
screenshot. This is due to the differences that lay with my thinking and the
actual information that was required. I had initially programmed my Python
application to map each shipment that had been received from CCA’s SAP
system to the customer of which the goods were being delivered to. I.E.
University of Auckland, I would then retrieve the CHEP ID for the University and

assign the pallets to the customer.

Unfortunately, as I had later realised after talking to my industry mentor I had
unfortunately programmed the application with my understanding of the
business process which was slightly incorrect. As I was using dummy data I was
unaware that each CCA customer was not assigned a CHEP Global ID and each

customer was not liable for the CHEP pallets.

However the responsibility and ownership of the pallets being delivered to small-
medium size customers came down to the logistics company that would deliver
the pallets. I.E. University of Auckland may not have a Global CHEP ID but goods
from CCA are delivered to the University via the logistics company Tolls, the
ownership of pallets are theoretically meant to be transferred to Tolls and not
the University of Auckland. I came across this finding when I had one of my
regular meetings with my industry mentor Jet and Outwards Good Distribution

manager Storm, who manages the Outwards goods process for CCA.

As part of my initial development process I had created the layout and set the
required fields into an information extract report template. The fields as listed in
the following screenshot do not have the same names as listed by SAP due to
the requirement input from CHEP’s EDI. The fields have been modified and by

me to accommodate CHEP’s requirements.

Page | 25

Reference Other Reference Shipment Date Pallet Quantity Purchasing Customer Purchasing Customer Address

210033

ABCDEFGHIJELMNOPQRST 00.00.0000 1.000 LUNCHLEND 9 EEN HRRLEY DR T 1

\ 4

Delivery S50l1d-To-FT TPPT Forwarding Agent Proc Time Ship T. Shipping Comp

80000011 1119113 0001 292855 00:00:00 Y003 RESMAN SIBATU

SAP Extraction Report Headers

The above screenshot demonstrates the latest and final revision of my SAP
extraction headers, the SAP extraction report has been updated significantly

when compared to the initial development stages of this project.

To limit the duplication of shipments and to ensure that I met the requirement of
data integrity and validity, I have created and set a default filter on the
subsequent item field. With the filter on as default, data is not duplicated and is
not listed multiple times within the results. This modification was required as

entries for multiple types of items were listed with the same quantity of pallets.

The total number of pallets field represents the pallet quantity for the entire
order. The following screenshot displays the interface created that can be run in
an automated extraction of results every 5 minutes. I will discuss briefly other

options as an alternative to regular batch jobs of 5 minutes.
BTech Extract Version 9

@

Report-spedific selections

Shipment Mumber 50241399 to 50241409
Customer purchase order number to | = |
Actual date of check-in to |?|
Shipment type to |E|

Shipment Numbers 50241399 - 50241409 to be selected

As an example, I created an extraction report for 10 individual shipments.

Shipment numbers 50241399 - 50241409 were entered into a select query.

Whilst I designed and created my Python application which serves as the
solution to CCA'’s current business problem, I had been using data that was

extremely dense. The data that was being used as the import file for my Python

Page | 26

application consisted of over 27,000 rows of information also known as

shipments. The amount of information within that data file represents a typical

day of shipments and orders for Coca-Cola Amatil NZ.

It is important to note that the extraction query can be configured to run

automatically on a daily basis or hourly basis. Essentially, it is up to CCA and

CHEP’s discretion as to how often they would like to process the shipment

information. Additionally, the longer CCA wait to process the transfer of

shipments it will subsequently result in CCA being liable for those pallets for a

longer period of time.

Furthermore, as a result of the above Shipment Number conditions that were

entered into the shipment number range, the following screenshot demonstrates

the results that were produced by my SAP extract report interface.

BTech Extract Version 9

Reference
50241399
50241400
50241401
50241401
50241402
50241402
50241402
50241402
50241402
50241402
50241402
50241402
50241403
50241403
50241403
50241403
50241403
50241403
50241403
50241403
50241403
50241403
50241403
50241403
50241404
50241404
50241404
50241404
50241404
50241404
sn241404

Other Reference Shipment Date Pallet Quantity Purchasing Customer

593857991
593857964
00000154898

4505564112
30720
4505573824

30721

417684

416951
417146
417352
4981551
417570
417570
13157

00000152073
13113

NZ1031

17.09.2013
17.09.2013
17.09.2013
17.09.2013
17.09.2013
17.09.2013
17.09.2013
17.09.2013
17.09.2013
17.09.2013
17.09.2013
17.09.2013
17.09.2013
17.09.2013
17.09.2013
17.09.2013
17.09.2013
17.09.2013
17.09.2013
17.09.2013
17.09.2013
17.09.2013
17.09.2013
17.09.2013
17.09.2013
17.09.2013
17.09.2013
17.09.2013
17.09.2013
17.09.2013
17 na 72

24.000
23.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
6.000
1.000
1.000
1.000
1.000
1.000
1.000
1 nnn

PROGRESSIVE ENTERPRISES #9700
PROGRESSIVE ENTERPRISES #9700
BP CONMECT BUSH INN

FACC CAFE 92 5%

MOUNT ROSKILL LIQUOR CENTRE
COCA COLA OCEANIA LTD

CCA BRANDS L&P NATL SAMPLG
COCA COLA OCEANIA LTD
OPORTO SYLWIA PARK
OPORTO SYLVIA PARK

CCA BRANDS L&P NATL SAMPLG
MASALA MT EDEN

SKYCITY RESTAURANT & BAR
FULLERS GROUP LTD

SKYCITY RESTAURANT & BAR
SKYCITY RESTAURANT & BAR
SKYCITY RESTAURANT & BAR
NEW WORLD METRO QUEEN ST
SKYCITY RESTAURANT & BAR
SKYCITY RESTAURANT & BAR
CROWNE PLAZA HOTEL

FIX QUAY 5T 638

BP CONMECT FANSHAWE ST
CROWNE PLAZA HOTEL

SPICE OF INDIA

MICROSOFT AUCKLAND

UMIYA

PITA PIT VIADUCT*S*
VIETNAMESE DELIGHT

HOBSOM STREET PHARMACY
N7 CONVENMIENCE STARE

Purchasing Customer Address
80 FAVONA RD

B0 FAVONA RD

338 RICCARTON RD

92 RUSSLEY RD

1490 DOMINION RD

19 CARBINE RD

19 CARBINE RD

19 CARBINE RD

286 MT WELLINGTON HWY
286 MT WELLINGTON HWY
19 CARBINE RD

510 MT EDEN RD

53 WELLESLEY ST

99 QUAY ST

53 WELLESLEY ST

53 WELLESLEY 5T

53 WELLESLEY 5T

125 QUEEN ST

53 WELLESLEY ST

53 WELLESLEY ST

128 ALBERT 5T

137 QUAY 5T

104 FANSHAWE ST

128 ALBERT 5T

21 ELLIOTT ST

22 VIADUCT HARBOUR AVE UNIT 1
25 ELLIOT 5T

22 VIADUCT HARBOUR AVE
21 ATRIUM ON ELLIOT

136 HOBSON ST

120 VINCEMT €T

Delivery

413168900
413168901
413167126
413169480
413168912
413169719
413169721
413169722
413169724
413169724
413169726
413169728
413169327
413169370
413169372
413169373
413169394
413169427
413160442
413169464
413169546
413169565
413169568
413169581
413168927
413169105
413169317
413169326
413169328
413169331
412160222

Sold-To-PT TPPT

8093503 AKAK
8093503 AKAK
8100840 CHCH
8097952 CHCH
8080859 AKAK
8020963 AKAK
8073496 AKAK
8020963 AKAK
8080304 AKAK
8080304 AKAK
8073496 AKAK
8109821 AKAK
8008147 AKAK
8035621 AKAK
8008147 AKAK
8008147 AKAK
8008147 AKAK
8094104 AKAK
8008147 AKAK
8008147 AKAK
8001682 AKAK
8028906 AKAK
8034746 AKAK
8061682 AKAK
8046098 AKAK
8112256 AKAK
BOOD779 AKAK
8091976 AKAK
8062870 AKAK
8092846 AKAK

anazala

Forwarding Agent| Proc Time

295450 15:51:29
295450 15:59:25
296965 04:21:28
296965 04:21:28
305485 04:42:26
305485 04:42:26
305485 04:42:26
305485 04:42:26
305485 04:42:26
305485 04:42:26
305485 04:42:26
305485 04:42:26
297242 04:55:25
207242 04:55:25
297242 04:55:25
297242 04:55:25
207242 04:55:25
207242 04:55:25
297242 04:55:25
297242 04:55:25
207242 04:55:25
297242 04:55:25
207242 04:55:25
297242 04:55:25
207242 £EE
297242

297242

207242

207242

297242

2072472

Shipment Numbers 50241399 - 50241409 extraction results

Ship T. Shipping Company

Yo14
Y014
Y014
Yo14
Y014
Y014
Y014
Yo14
Y014
Y014
Y014
Yo14
Y014
Y014
Yo14
Y014
Y014
Y014
Yo14
Y014
Y014
Yo14
Yo14
Y014
Y014
Yo14
Y014
Y014
Y014
Yo14
vnia

TOLL TRANZLINK NI ERS

TOLL TRANZLINK NI ERS

SCOOBIE CARRIERS PARTNERSHIP
SCOOBIE CARRIERS PARTNERSHIP
LOGICAL VENDOR FOR CCA DRIVERS
LOGICAL VENDOR FOR CCA DRIVERS
LOGICAL VENDOR FOR CCA DRIVERS
LOGICAL VENDOR FOR CCA DRIVERS
LOGICAL VENDOR FOR CCA DRIVERS
LOGICAL VENDOR FOR CCA DRIVERS
LOGICAL VENDOR FOR CCA DRIVERS
LOGICAL VENDOR FOR CCA DRIVERS
PHEMESS LIMITED

PHEMESS LIMITED

PHEMESS LIMITED

PHENESS LIMITED

PHEMESS LIMITED

PHEMESS LIMITED

PHEMESS LIMITED

PHEMESS LIMITED

PHEMESS LIMITED

PHEMESS LIMITED

PHEMESS LIMITED

PHEMESS LIMITED

PHEMESS LIMITED

PHEMESS LIMITED

PHENESS LIMITED

PHEMESS LIMITED

PHEMESS LIMITED

PHEMESS LIMITED

DHENESS | TMITEN

The above screenshot of information can, for instance, be automatically created

and extracted by a batch job approximately every 5 minutes. This time can be

set when the transaction SE93 is used to modify my current SQVI Report. With

changes made to the processing of the report, the report can be extracted

automatically which can serve as an update for the newest shipments that have

been dispatched.

Page | 27

- Subslt
000001
000001
000001
000001
000001
000001
000001
000001
000001
oo0o01
000001
000001
000001
000001
000001
000001
ooooo1
000001
000001
000001
oo0o01
000001
000001
000001
000001
000001
000001
ooooo1
000001
000001
nnnnnt

Additionally, this extraction can also be done without a timer, whereby the batch
job is run only when new shipments are detected and that information is then
parsed to my Python application. Although, with parameters as aforementioned,
several changes will be required to be made to my extraction report query which
is run on CCA’s SAP system.

The information from my SAP report is exported and is then read by my Python
application. As previously mentioned my Python application has been
programmed to work with the customers and vendors details that have been
provided to me by CCA. These details are then used in conjunction with the
extracted SAP CSV file.

Page | 28

Python Application Flow

CCATY

coca-coLa amany il

l

Shipment Customer Vendor
Infoarmation Information Infoarmation
Stage 4 *@ [—*
-
| Python Application |
Stage 5

Generated
L5V

& CHER SA :.'

Stage 7

Python Application Flow Diagram

Stage 1

Stage 2

Stage 3

Stage 6

The above diagram demonstrates the operation stages of my Python Application

at an abstract level. The initial design of this Python Application was different in

the sense that there were only two input sources whereas there are now three

input sources. The input sources - Shipment Information, Customer Information

and Vendor Information now replaces my previous design which did not account

Page | 29

for the Vendors. My Python Application operates in a manner which can be

described as a process that has seven main stages.

Stage 1

In this stage of the process the majority of required information is exported from
CCA's SAP system. The information exported from the SAP system is defined by
my extraction query I had completed in the earlier stages of this project. An
overview of the SAP development section of this project can be found within the
Solution Design section of this report. The shipment information that had been
extracted from the CCA SAP system accounts for one third of the information
required in stage 2. The extracted query from SAP is imported into my Python
Application as a .CSV file and the fields of information extracted via SAP from

stage 1 are as follows with their uses for this project:

e Reference - CCA’s reference that acts as a Primary Key.

e Other Reference - Additional information that is often provided by
customers such as Progressive Enterprises. This information is generally a
Purchase Order number.

¢ Shipment Date - Date shipment was dispatched from CCA Distribution
Centre.

e Pallet Quantity — Number of pallets that were dispatched. The liability of
these pallets are then transferred to either a Customer or Vendor
(Shipping Company).

e Purchasing Customer - Customer that will pay for the goods supplied by
CCA. I.e. Progressive Enterprises.

e Purchasing Customer Address — Customer’s delivery address.

e Delivery — Unique delivery number is allocated to each shipment.

e Sold-To-Party - CCA’s unique identifier for each Customer.

e Transportation Planning Point — Route/Area that the goods will be
delivered to.

e Forwarding Agent — CCA’s unique identifier for each Vendor (Shipping
Company).

e Processing Time - Processing time for each shipment.

e Shipment Type - Type of shipment, this was a very important field as
there were multiple shipment types and only there are only a few that are

applicable to my project.

Page | 30

e Shipping Company - Company that delivers the goods.

e Subsequent Item - Required field to limit duplicate results.

Stage 2

As described in stage 1 the information that had been extracted from SAP via
the use of my extraction query did not account for all the information required.
The next set of information that was required was the Customer Information.
This set of information contains data such as CCA’s unique identifier for each
Customer, CCA’s unique identifier for each Vendor and the Customers Global
CHEP ID as displayed in the Customer Information table below. The Customer
Information table is imported into my Python application as a .CSV file which
allows CCA to modify the contents of the file at any time given the authorisation.
For example, if new customers are added or deleted, the .CSV file must be
updated to reflect those changes.

Customer Vendor CHEP Account
1001405 299524 6400213114
1001415 307835 6400414212
1001420 308507 6400717290
1001425 308507 400717310
8035085 295450 4000145212
1001410 307855 6400213109
BO1B7ET 295450 0400222202

Customer Information file

Another set of information was also required which was the Forwarding
Agent/Vendor/Shipping company information along with the Transportation
Planning Point and Global CHEP ID. As with the Customer Information table the
Vendor Information table is also imported into my Python application as a .CSV
file. The information from these two tables allow me to link shipments from
stage 1’s import and modify the information in a manner which allows me to
vadiate the data correctly for CCA and CHEP. The above screenshot represents

the typical layout of a Customer Information file.

Page | 31

Forwarding Agent TPPT CHEP Account

296366 WPWP 6400444096
296366 WPWN 6400444096
295450 WPWN 6400444409
295676 AKAG 4000153694
295386 AKOT 4000199167
295450 AKAW 4000210866
295386 AKTH 4000226240
295450 AKAA 6400222202
295450 AKMM 6400222205
296366 AKAH 6400261140
295450 AKAN 6400444412

Vendor Information file

The above screenshot represents the typical layout of the Vendor Information
file. To conclude stage 2, all the information as aforementioned is imported into
the Python Application. The next step within the process will be described in the

next stage.

Stage 3

The flow of information in this stage is simplified and comes down to the use of
multiple CSV file reader instances and the SQLite database. Within this stage of
the process my Python application reads all the information as aforementioned in
the previous stages and then inserts the information into the respective tables
within the SQLite database. Multiple instances of the CSV reader were used to do
so which then allowed my application to import the Shipment Information,
Customer Information and Vendor Information into the CCA.db database file and

into their respective tables.

Stage 4

This stage proved to be the most time-consuming and crucial stage in regards to
the design and development aspect of the project. Details in regards to the
development of this stage will be discussed within the next section of this report.
In this section I will give an overview of the information flow at this stage of the
flow diagram. In this stage my decision-making logic process occurs, this
process can be thought of a set of ‘questions’. These ‘questions’ allow my Python
application to essentially decide how the shipment records should be
manipulated. The data is then manipulated at this stage in accordance with the

results from the decision-making logic process. In order to meet CCA and CHEP’s

Page | 32

requirements to effectively make-use of the EDI solution, I had to ensure my

logic process adhered strictly to their requirements and guidelines.

Furthermore, shipment information that was previously imported and inserted
into the SQLite database and tables is now modified and deleted according to set
conditions, this will also be discussed in-depth in the next section of this report.
Shipments within this stage are linked to Customers, Vendors, Transport Routes
and Shipment Types which then allows the program to determine with who must

accept liability / take ownership of the pallets.

Stage 5

Within this stage of the process, the export of manipulated data from my Python
application occurs. The data is read from my CCA.db database and is then
written to a file "CHEP_EXPORT.csv” which adheres to CHEP’s requirements.

Stage 6

Once the file has been created from Stage 5, my Python application then emails
the file using multiples modules, I will discuss this further within the next section
of this report. The file "CHEP_EXPORT.csv"” is emailed to a pre-configured email
address provided by CHEP that monitors all incoming files from my Python

application.

Stage 7

Within this stage of the process it is CHEP’s liability to ensure the file received
from stage 6 has been processed correctly. The exported file from my Python
application is imported into CHEP’s SAP system which then allows the data to be
parsed through to the CHEP’s Portfolio Plus software. This Portfolio Plus software
allows CCA and CHEP representatives to view and make changes to the shipment

data if necessary.

Python Application Development

Now I move onto the major programming aspect of my project. Extending from
the previous section, this is whereby the main development and main logic
operations occur. Firstly I began programming my Python application with the

use of the following Python modules:

e SQLITE3 - SQLite 3 Library that implements the SQL database engine
(SQLite.org, n.d.)

Page | 33

e (CSV - Comma Separated Values Module (Python.org, 2015)

e XLRD - Library to extract data from Microsoft Excel spreadsheet files
(Python.org, 2015)

e OS - Miscellaneous operating system interfaces (Python.org, 2015)

e SYS - System-specific parameters and functions (Python.org, 2015)

These aforementioned modules allowed me to begin programming in respect
to creating the database and tables required for the operation of my Python
Application. It is important to note that a large variety of modules were used,
this can be seen within the source code files. To adhere to the requirements
of my design and the requirements set in-place for the project I created the
following tables:

e CCASHIPMENTS
e CCACUSTOMERS
e CCAOQOUTLETS

e CHEPINFO

e CHEPEXPORT

e TEMP

The following table shows the fields that are allocated to each SQL Table.

SQL Table Allocated Fields

e REFERENCE

¢ OTHER_REFERENCE

e SHIPMENT_DATE

e PALLET_COUNT

e CUST

e CUST_ADDRESS
CCASHIPMENTS e DELIVERY_NUM

e SOLD_TO

e TPPT

e FWDING_AGENT

e PROC_TIME

e SHIP_TYPE

e SHIP_COMP

Page | 34

CCACUSTOMERS

CCAQOUTLETS

CHEPINFO

CHEPEXPORT

SUBNO
SAP_FWDING
TPPT
CUSTCHEP_ID

OUTLET
SAP_FWDING
OUTLETCHEP_ID
LINENO
REFERENCE
OTHER_REFERENCE
SHIPMENT_DATE
PALLET_COUNT
CUST
CUSTOMER_SAP
CUSTCHEP_ID
PROC_TIME
LINE_TYPE
RECORD_NUM
DOCKET_NUMBER
SENDER
RECEIVER

DOD

DOR

EFD

REF1

REF2

MATERIAL
QUANTITY
LINE_TYPE
DOCKET_NUMBER
DATE

SENDER
MATERIAL

Page | 35

These fields as shown in the table above were required for me to design my
Python application whereby the logic processing occurred effectively. I utilised
the input file from my SAP generated report, CCA’s Customer and Vendor files
and inserted the data into the SQL Tables and the fields associated with each
field. Whilst designing the structure of my Python application I decided to keep
the main functions separate. Thus, I developed my Python Application in the

following manner:

e Main.py
e generateDatabase.py

e pythonEmailer.py

Therefore the generation of the database in the instance of my application is
imported by main.py and as a result ‘CCA.db" and the SQL tables are all
generated within the generateDatabase.py script of my application. A snippet of
code demonstrating the CCASHIPMENTS table creation is shown below.

1. conn.execute ('''"'" CREATE TABLE CCASHIPMENTS
2 (REFERENCE LONG NOT NULL,

3. OTHER_REFERENCE TEXT,

4. SHIPMENT_DATE TEXT NOT NULL,

5 PALLET_COUNT INT NOT NULL,

6 CUST CHAR(50) NOT NULL,

7 CUST_ADDRESS CHAR(50) NOT NULL,

8. DELIVERY_NUM NOT NULL,

9. SOLD_TO NUM NOT NULL,

10. TPPT NOT NULL,

11. FWDING_AGENT NOT NULL,
12. PROC_TIME NOT NULL,

13. SHIP_TYPE NOT NULL,

14. SHIP_COMP NOT NULL,

15. SUBSNO INT NOT NULL);"''")

Moreover, the generation of the SQL Tables and the SQL database was only one
part of the application. Once I had the tables and database generation running
correctly, I had the following information displayed as per my design

requirements.

Page | 36

CCA Database & Table Generation
Information: CCA Database created successfu
Information: NTS Table created successfully
Information: S Table created successfully
Information: CCAQUTLETS Table created successfully

Information: CHEPINFO Table created successfull
Information: CHEPEXPORT Table created successfu{ly
Information: TEMP Table created successfully

The above screen will be presented every time a user runs the application, this is
due to the fact that I was unable to get permission to run the SAP SE93
transaction and automate the report extraction from SAP every 5 minutes. I will
discuss this further in the Future Work section of this report. It is important to
note that with one simple line of code the application can be modified to store all
the fields of data without having to clear the tables when the program runs.

The next step in my development process was to write additional code to allow
for the reading of Shipment, Customer and Vendor Information which would be
subsequently inserted into my SQLite Database and tables. I did this by using
the CSV Reader (Python.org, 2015), the following code demonstrates that there
are three instances of the CSV reader. Each instance of the CSV reader reads
each file respectively from a defined location which should be stored securely.

1. data =csv.reader(open(r'C:\Users\Avish\Desktop\CCA Python 1\Python I
NPUT\shipments9.csv', 'r'))

2. data2 =csv.reader(open(r'C:\Users\Avish\Desktop\CCA Python 1\Python
INPUT\vendors.csv', 'r'))

3. data3 =csv.reader(open(r'C:\Users\Avish\Desktop\CCA Python 1\Python
INPUT\customers.csv', 'r'"))

Once my Python application is deployed into the production environment at the
CCA worksite, a network location will then be accessible to only my Python
application. Therefore the above directories can then be changed to a secure
network location to where these files are stored and maintained by an
authorised CCA employee. This would most likely be an employee who works
within the Distribution Centre for CCA.

Once I had tested that the files were being read correctly I was then required to
insert all the imported information from the Shipments, Vendors and Customers
CSV files. Therefore as per my Python application design I defined the “import
sqlite3” module at the top of my Main.py class and subsequently used the

“sqlite3.connect” method to connect to my CCA.db database. I deemed that the

Page | 37

database connection was successful as I did not encounter any issues once I had
written the code for the connection. The manner in which a connection is
established was defined on the DB-API 2.0 interface webpage (Python.org,
2015). As I had followed the guidelines as defined on the webpage I had to
ensure I did not develop code in a manner which would be considered as

insecure.

Moreover, as I went further into the development process, I had to extend my
knowledge in Python and as a result I was experimenting and testing my code
simultaneously. Thus, before I could continue developing the rest of my Python
application, I was required to understand how the data would be inserted into
my database. This data as previously mentioned was read by the multiple
instances of CSV reader, I then had to learn how the SQLite’s ‘executemany’
function operated within Python (Python.org, 2015).

Once I had referred to the online documentation, I was then aware of how to
code my Python application to insert the information from the CSV reader
instances and into my SQLite tables. The data insertion for the shipments is
shown below with a snippet of code, this demonstrates that the table
CCASHIPMENTS is used to store the shipments which were extracted from the
earlier development of my SAP extraction report. I also ensured that I followed

good naming convention throughout the development process.

1. conn.executemany("INSERT INTO CCASHIPMENTS(REFERENCE, OTHER_REFERENC
E, SHIPMENT DATE, PALLET_COUNT, CUST, CUST_ADDRESS, DELIVERY_NUM, SO
LD_TO, TPPT, FWDING_AGENT, PROC_TIME, SHIP_TYPE, SHIP_COMP, SUBSNO)
VALUES (?, ?, 2, 2, ?, 2, 2, 2, ?, 2, 2, 2, ?, ?)", data)

Subsequently within my development phase, I also used the SQLite ‘select’
function to select all the data and also used the ‘cursor’ object which allowed me

to print each row of data that was read by the CSV Reader.

Once all the shipment information extracted from SAP, Customer and Vendor
Information provided to me by CCA was inserted into the respective tables in my
SQLite database. The next step within my development process was to start the

manipulation process of the imported data.

Page | 38

The following screen is displayed once the Shipment, Vendor and Customer
information has been imported and inserted successfully into the SQLite

database and tables.

: Importing Shipment Information
Importing Vendor Information
: Importing Customer Information

formation: Shipments Imported and Inserted Successfully
formation: Vendors Imported and Inserted Successfull
formation: Customers Imported and Inserted SucceasFuIly

The first set of data that required manipulation was from the CCASHIPMENTS
table, this data had to be filtered down to certain Shipment Types. The irrelevant
shipment types had to be deleted from the database. Thus as part of my
business process learning phase at CCA I determined which shipment types were
not required for the Auckland Distribution Centre. Shipment types that were to
be deleted from the dataset are as follows:

e Y009
e Y012
e Y013
e Y017

These aforementioned shipment types had to be deleted from the database as I
learnt they were not applicable for the Auckland Distribution centre. The result of
keeping those shipments could be detrimental to the CCA pallet transfer process.
The following snippet of code demonstrates the manner in which I deleted the

aforementioned shipment types.

1. cursor = conn.execute("DELETE FROM CCASHIPMENTS where SHIP_TYPE =='Y
009' OR SHIP_TYPE =='Y012' OR SHIP_TYPE =='YQ13' OR SHIP_TYPE =='Y0O1l
7lll)

The following screenshot demonstrates the screen which is shown to the user

when the irrelevant shipment types are deleted.

I had initially gone down the wrong path as my understanding of the business
process and CHEP pallet transfer process was incorrect. My understanding of the

process inferred that each CCA Customer was assigned a CHEP ID which

Page | 39

unfortunately was not the case. To avoid large programming catastrophes I tried
to ensure I met regularly with the Distribution Centre team, they would advise
me if my development progress at the time was heading in the right direction or
not. Therefore as part of my learning process I then came to the understanding
that my Python application logic in which the Shipments were linked to

Customers was incorrect.

More importantly, I was then required to further my learning within the CCA’s
business environment and understand the manner in which shipment data
should be linked to each Customer/Outlet and the newly introduced concept of a
Vendor. I was unaware at the time that Vendors also known as the shipping
agents would take liability of the pallets when goods were dispatched to smaller

customers of CCA such as a local dairy.

I will now go in-depth into the logic that was then required to link and
manipulate shipment data for customers and vendors of CCA. The data
manipulation within this phase was continually adjusted as my understanding of
the pallet transfer process grew.

1. cursor = conn.execute("SELECT ship.REFERENCE, ship.OTHER_REFERENCE,
ship.SHIPMENT DATE, ship.PALLET_COUNT,ship.CUST, ship.CUST_ADDRESS,
vend.CUSTCHEP_ID, ship.PROC_TIME from CCASHIPMENTS ship, CCAVENDORS
vend where (ship.TPPT = vend.TPPT) AND (ship.FWDING_AGENT = vend.SAP
_FWDING) group by REFERENCE")

The above snippet of code demonstrates the manner in which the CCA
Shipments are linked to CCA Vendors. Fields taken from CCASHIPMENTS are
joined to fields fromm CCAVENDORS only in the instance where the Transportation
Planning Point from CCASHIPMENTS matches the Transportation Planning Point
from the CCAVENDORS table and where the Forwarding Agent (Vendor) from
CCASHIPMENTS matches the Forwarding Agent from CCAVENDORS. These

results are then grouped by Reference.

The first instance of linking and manipulating Vendor information to the
shipments can be best explained with an example. For example if CCA dispatch
products to "Company A” via the Forwarding agent (Vendor) “Tolls” this snippet
of code allows the Python application to determine the shipments in which the
liability of pallets are directly transferred to “Tolls” instead of the CCA

Page | 40

Customer/Outlet. The liability of these pallets is determined by the Forwarding
agent (Vendor) and the Transportation Planning Point that is extracted from
SAP. Therefore when both conditions in the snippet of code are met the liability
of pallets for the respective shipments are transferred to “Tolls” the Forwarding
Agent/Vendor.

Once this query had been executed I used the cursor object to insert all the
applicable shipments into the CHEPINFO table. This is demonstrated as per
below in the snippet of code.

1. conn.executemany("INSERT INTO CHEPINFO(REFERENCE, OTHER_REFERENCE, S

HIPMENT_DATE, PALLET_COUNT, CUST, CUSTOMER_SAP, CUSTCHEP_ID, PROC_TI

ME) VALUES (?, ?, ?, ?, ?, ?, ?, ?)", cursor)
The use of the CHEPINFO table was required as I needed to use the defined
Autoincrement function (SQLite.org, n.d.). This function was required as I
needed a line number for each shipment when the information was transferred
to the CHEPEXPORT table. The use of Autoincrement would automatically store a
line number for each row of information inserted into the table, the line number
would also automatically increment when another row of information was added.
I did not directly use the Autoincrement function within the CHEPEXPORT table

as the line numbers needed to be adjusted.

This therefore was a better option for me to use instead of defining and creating
a method that calculates line numbers. Although due to the use of the
Autoincrement function the CPU usage was increased but I believed this was a
fair trade off as the number of rows that would be inserted into CHEPINFO would

not be extremely large (SQLite.org, n.d.).

The next stage in the development process required me to perform the second
instance of linking shipments and manipulating data for Outlets also known as
CCA’s Customers. This stage also included the insertion into the CHEPINFO table.
The following snippet of code demonstrated the linking and manipulation process

that was required.

Page | 41

1. cursor2 = conn.execute("SELECT ship.REFERENCE, ship.OTHER_REFERENCE,

ship.SHIPMENT_DATE, ship.PALLET_COUNT, ship.CUST, ship.CUST_ADDRESS

, outlet.OUTLETCHEP_ID, ship.PROC_TIME from CCASHIPMENTS ship, CCAOU

TLETS outlet where (ship.FWDING_AGENT = outlet.SAP_FWDING) AND (ship
.SOLD_TO = outlet.OUTLET) group by REFERENCE")

2. conn.executemany("INSERT INTO CHEPINFO(REFERENCE, OTHER_REFERENCE, S

HIPMENT_DATE, PALLET_COUNT, CUST, CUSTOMER_SAP, CUSTCHEP_ID, PROC_TI

ME) VALUES (?, ?, ?, ?, ?, ?, ?, ?)", cursor2)
The above snippet of code demonstrated the manner in which the CCA
shipments are linked to CCA Outlets/Customers. Fields that are obtained from
CCASHIPMENTS are joined to fields from CCAOUTLETS only in the instance
where the Forwarding Agent from CCASHIPMENTS matches the Forwarding
Agent from CCAOUTLETS and also where the Sold-To-Party from
CCASHIPMENTS matches the Outlet/Customer from CCAOUTLETS. These results
are then also grouped by Reference to limit the possibility of duplicate
shipments. Line 2 of the above snippet of code demonstrates the manner in
which the selected shipments from line 1 are inserted into CHEPINFO via the use

of object cursor2.

As shown above with the second instance of linking and data manipulation for
CCA Outlets/Customers, this was done in an effort to ensure the pallet liability
was transferred to the customer instead of the forwarding agent listed within the

shipment record.

The second instance of linking Customer/Outlet Information to the Shipments
can also be best explained with an example. For example if CCA dispatch
products to "Company B” via the Forwarding agent (Vendor) “Mainfreight” the
liability of pallets in this instance will not be transferred to the Forwarding Agent
as the Outlet also known as the CCA Customer is a large enough company that
takes liability of the pallets and therefore the pallets are then transferred to

them.

Page | 42

Once the decision-making process had been executed in regards to the shipment
linking and data manipulation for both the Customers and Vendors, the following

screen is displayed accordingly.

: Starting - Decision-making process for Vendors
Information: Completed - Decision-making process for Vendors

Information: Starting - Decision-making process for Customers/Qutlets
Information: Completed - Decision-making process for Customers/Qutlets

Information:

The CHEPINFO table was required as the majority of data as required by CHEP
was within this table, but the key difference between CHEPINFO and
CHEPEXPORT was that the CHEPINFO data was not formatted to CHEP’s
requirements. The use of CHEPINFO was required as I needed to perform
manual changes to the value of the Autoincrement function mentioned earlier.
Once the changes were applied the final version of shipment data was then
inserted into CHEPEXPORT. The next stage of the development process for the
Python application was to prepare the information which needed to be exported
to CHEP according to their requirements. The following tables demonstrate the
data layout requirements as per CHEP’s EDI solution. I had to conform exactly to
these requirements whilst I was writing the code for my Python application. If
these requirements were not met CHEP would advise me that the shipment data
sent to them would not be accepted.

Header Records:

Header Indicator Y
2 Recordnum Y
3 RecordCount 24 Y
4 SendDate 01102015 Y
5 ProgramName CDKTF Y
6 ProgramVersion 1.1 Y
7 InformerGLID 6412345678 Y
8 CountryCode 64 Y
9 CustomerFileRef AAZA956141 Y

Page | 43

Movement Records:

LineType F/D/C Y
2 RecordNum 3 Y
3 Docketnumber AAZZ0O0OOOOO01A Y
4 Sender 6412345678 Y
5 Receiver 6400987654 Y
6 DOD 01102015 Y
7 DOR 01102015 Y
8 EFD 01102015 Y
9 REF1 Reference 1 Y
10 REF2 Other Reference Y
11 MATERIAL 16001 Y
12 QUANTITY 10 Y

The Header and Movement records acted as a strict guideline whilst I was
preparing the CHEP_EXPORT.csv file. Prior to the generation of the export file I
was required to ensure that the headers as requested by CHEP were inserted
prior to the export file being emailed. The reason for using a CHEPEXPORT table
was due to the fact that were multiple fields that were not required for CHEP and
therefore this new CHEPEXPORT table only contained the relevant data for CHEP.

All unnecessary data was not imported into this table.

Moreover, as per CHEP’s EDI requirements I was required to obtain the relevant
and required details from CHEP which identifies CCA NZ within CHEP’s SAP
environment. Information from the Header Records table were obtained from
CHEP, excluding Recordnum and RecordCount. These two fields are determined
and filled in by my Python Application. Another reason as to why I was required
to have a separate table for CHEP data extraction was because I was required to
calculate in advance the number of records that were to be sent to CHEP. This
RecordCount value was to be inserted into the header of the CHEP_EXPORT.csv

file.

Page | 44

The RecordCount as required by CHEP was calculated by my Python application

in the following manner:

. cursor =conn.execute ("SELECT count(*) from CHEPINFO")
. recordCount =cursor.fetchone();

. recordCount2 =int(' '.join(map(str,recordCount)))

. recordCount2 =recordCount2 + 2;

A WNPR

I was required to use the SQL count aggregate function as this allowed me to
calculate the number of rows within the CHEPINFO table. The number of rows in
this table directly correlated to the number of shipment records that needed to
be sent to CHEP. Whilst I was writing the code to perform such a calculation, I
was faced with a tuple related error. For example if I ran the following

statement:

1. print(recordCount)

I was presented with a number in this format “(29,)"”. Due to the tuple being
present I was required to remove the brackets and the comma. Essentially I was
required to convert the tuple into an integer. The recordCount variable as shown
above stores the calculated total number of rows within the CHEPEXPORT table.
The second variable recordCount2 was required as I needed to include the 2
header rows that are inserted into each CHEP_EXPORT.csv file. recordCount2

value was therefore inclusive of the two header rows.

Due to several issues I was facing with inserting variables concurrently with
information from another table I decided to use a TEMP table to store the
variables. The variables stored within this TEMP table were variables such as,
lineType, docketNumber, date, informerGLID and materialType. The
aforementioned variables were requirements set by CHEP and therefore when I
was required to enter all the manipulated shipments into the CHEPEXPORT table
I concurrently extracted the information from the TEMP table which included the

two header rows.

Moreover, for simplicity I ensured that the CHEPEXPORT table was formatted
according to CHEP’s requirements. This allowed me to perform a full read of my
table to generate the CSV file as required by CHEP. I will now discuss the next
major component of my Python application. The following snippet of code

demonstrates the manner in which my Python application read the rows of

Page | 45

shipment information from the CHEPEXPORT table and subsequently wrote it to
the CHEP_EXPORT.csv file.

. with sglite3.connect("CCA.db") as connection:

file =open("CHEP_EXPORT.csv", "w", newline='")
csviWriter =csv.writer(file)

connection =cursor.execute("select * from CHEPEXPORT")
info =connection.fetchall()

. csviWriter.writerows(info)
. file.close()

coNOUV A WNER

The following screenshot demonstrates the screen in which the user will be

shown once the export file has been generated.

Information: Starting - Generate Exportable CSY File

Information: Completed - Generate Exportable CSVY File

The aforementioned snippet of code operates in the following manner. Firstly my
Python application was required to use SQLite3 to connect to the database file
that was created during the initial stages. This database file was generated
within the generateDatabase.py package as ‘CCA.db’. Line 2 indicates the file
that is to be created which is the CHEP_EXPORT.csv and the parameter “w”
indicating ‘write’. Line 4 allows the Python application to read the CHEPEXPORT
table from the CCA.db and concurrently select all rows of information from the
table. The fetchall() function as part of the cursor then allows the Python
application to fetch all the rows from the CHEPEXPORT table and of which is then

written into the file as shown on line 7.

During the development process I was having several issues whereby the
pythonEmailer.py was emailing the CHEP_EXPORT.csv file as a blank file
although the file had already been written. After thoroughly reviewing Python
documentation online I came to the realization that it was because my Python
application still had the CHEP_EXPORT.csv file open and was therefore unable to
attach the file with the contents. I required a single piece of code to fix this
issue, this is shown on line 8 - file.close(). The following screenshot
demonstrates the contents of the extracted CHEP_EXPORT.csv file, this file is
sent to CHEP and is processed within the CHEP SAP system of which then parses

the information into Portfolio Plus.

Page | 46

D000 D0o0o0o0Do0Do0o0DDo0Do0oDDoDo0DoDoDoDoDoDoDoDo0DoDoDoDoDoDoDoOmT

1 a6

3 NZBZ2610341A

4 NZBZ2610342A

3 NZBZ2610343A

6 NZBZ2610344A

7 NZBZ2610345A

8 NZBZ2610346A

9 NZBZ2610347A

10 MZBZ2610348A

11 NZBZ2610349A

12 NZBZ26103410A
13 MZBZ26103411A
14 NZB726103412A
15 NZBZ26103413A
16 MZBZ26103414A
17 NZBZ26103415A
18 NZBZ26103416A
19 MZBZ26103417A
20 NZBZ26103418A
21 MZBZ26103413A
22 NZBZ26103420A
23 NZBZ26103421A
24 MZB726103422A
25 NZBZ26103423A
26 NZBZ26103424A
27 MZBZ26103425A
28 NZBZ26103426A
23 MZBZ26103427A
30 NZBZ26103428A
31 NZBZ26103429A
32 MZBZ26103430A
33 NZBZ26103431A
34 NZBZ26103432A
35 MNZB726103433A
36 NZBZ26103434A

26102015 CDKTF
2 DOCKETNUMBER SENDER

6400213101
6400213101
6400213101
6400213101
6400213101
6400213101
6400213101
6400213101
6400213101
6400213101
6400213101
6400213101
6400213101
6400213101
6400213101
6400213101
6400213101
6400213101
6400213101
6400213101
6400213101
6400213101
6400213101
6400213101
6400213101
6400213101
6400213101
6400213101
6400213101
6400213101
6400213101
6400213101
6400213101
6400213101

RECEIVER

6400261140
4000226240
6400222205
6400444096
6400444096
6400444036
6400444096
6400444096
6400444096
6400444096
6400444036
6400444096
6400444096
6400222205
6400222205
6400222202
6400222202
6400444409
6400261140
6400261140
4000199167
6400222202
6400444409
4000153694
4000153694
6400444412
6400444412
4000226240
4000199167
6400261140
6400222205
6400222202
4000149212
4000149212

1.1

DoD
26102015
26102015
26102015
26102015
26102015
26102015
26102015
26102015
26102015
26102015
26102015
26102015
26102015
26102015
26102015
26102015
26102015
26102015
26102015
26102015
26102015
26102015
26102015
26102015
26102015
26102015
26102015
26102015
26102015
26102015
26102015
26102015
26102015
26102015

6400213101

DOR

26102015
26102015
26102015
26102015
26102015
26102015
26102015
26102015
26102015
26102015
26102015
26102015
26102015
26102015
26102015
26102015
26102015
26102015
26102015
26102015
26102015
26102015
26102015
26102015
26102015
26102015
26102015
26102015
26102015
26102015
26102015
26102015
26102015
26102015

Python Application Output -
CHEP_EXPORT.csv file example

64
EFD

26102013
26102015
26102015
26102015
26102015
26102015
26102015
26102015
26102013
26102015
26102015
26102015
26102015
26102015
26102015
26102015
26102013
26102015
26102015
26102015
26102015
26102015
26102015
26102015
26102013
26102015
26102015
26102015
26102015
26102015
26102015
26102015
26102013
26102015

NZBZ2610234

REF1 REF2
50598306 6419486
50598643 5424819
50598644 ©424379
50558701 88694
50598702 25200
50598703 287379
50558704 364138
50598705 55865
50598706 35238
50598741 84166652
50598742 84166911
50558743 84166912
50598744 84166816
70112692

70112693 aaron
70112695

70112696 4.5E+09
70112711

70112726 6422312
70112757

70112776 50584380
70112777 50589085
70112869 322253
70112870 6424273
70112871

70112872 44857
70112873

70112876

70112877

70112878

70112880 6424765
70112882 AL45459
50598108 463222
50598281 463220

MATERIAL QUANTITY

16001 24
16001 8
16001 1
16001 1
16001 1
16001 13
16001 3
16001 1
16001 1
16001 24
16001 24
16001 24
16001 24
16001 6
16001 9
16001 27
16001 12
16001 32
16001 36
16001 26
16001

16001 4
16001 28
16001 26
16001 19
16001 37
16001 23
16001 13
16001 20
16001 36
16001 a0
16001 30
16001 13
16001 17

Furthermore, I will now discuss the final aspect of my Python Application which

is the pythonEmailer.py. This aspect of the project took a considerable amount

of time also as there were several aspects that continuously required

adjustment. By the end of the testing and modification phase during

development of the pythonEmailer.py I had sent an excess of 250 emails.

The pythonEmailer initially contained several issues. The main issues I

encountered are as follows:

No email was being sent

Failed logon to email server

No attachment within email

Corrupted attachment when sent

To get past a few of these key issues I spent a considerable amount of time

fixing every issue whilst experimenting and using different MIME handling

Page | 47

packages. Several issues were related to the MIME types and the encoders I had
used. Therefore I continuously refined my pythonEmailer package to suit to my
requirements which subsequently then resulted in attaching the CSV file to an
email. The following screenshot demonstrates the screen in which the user is

shown once the email has been generated and sent.

Information: Email is currently being prepared
Information: Email has been sent

Information: Pallet Liability Transfer Process Completed

Furthermore, I ensured that I met CCA’s requirements of this project by
successfully demonstrating the operation of my Python application to my
industry mentor. I also obtained the CHEP’s test EDI email address whereby the
email sent from my Python application that contained the CHEP_EXPORT.csv file
was classed as approved and therefore meant that my Python application
development was a success. I have also ensured that my Python application has
met the brief requirements that were initially provided to me by CCA.

Future Work

I believe that this project should be taken further in regards to additional
development by a CCA representative or contractor. There are a few aspects
which I believe should be changed and unfortunately due to a series of factors
such as time, brief requirements, University requirements, CCA requirements
and CHEP requirements I was unable to implement certain features. Certain
characteristics such as the manner in which the shipment information is
transferred to CHEP should be modified. I was required to use CHEP’s EDI as
they have no alternative solution of parsing data to them. Therefore the security
in this sense should be improved from their side. The solution as developed by
me allowed my Python application to send extracted shipment information from
my database to CHEP. In this section of the report I will discuss improvements in

which I believe will further enhance this developed solution.

GUI - Graphical User Interface

To further develop on-top of my existing Python Application I recommend for

programmers to develop a Graphical User Interface (GUI). A GUI will allow for
CCA Distribution Centre employees to use icons or visual cues to interact with

my Python application. A GUI can be considered as a human-computer interface

Page | 48

and it essentially allows humans to interact with a computer (Linfo.org, 2004).
As my Python application is based off a CLI known as a command line interface
(Linfo.org, 2004) a GUI will be a significant addition and should definitely be

considered as part of the Future Work.

The implementation of a GUI and additional features can allow CCA Distribution
Centre employees to have a pallet transfer count total for set periods. At present
a total is given for each instance in which the program runs. For example, a CCA
employee can select a custom time period and view the total number of pallets

transferred for that period if this additional feature is implemented.

Therefore at the end of month when re-conciliation of pallets occur, an employee
can simply select that period and view the total number of pallets that have
been transferred to Vendors and CCA Customers. If my Python application is
deployed at present the Distribution Centre employees will be able to view the
results of the automatic processing and extraction of data via the Portfolio Plus

interface which belongs to CHEP.

Furthermore, another additional feature that can be implemented into my
Python application is the search function, this function can be added within the
GUI which will allow employees to view a Customer/Vendor details and make
changes to the data only if the employee is authorised to do so. Additionally, the
employee will also be able to view the total number of pallets that have been

transferred to that Customer / Vendor over a custom time period.

Over 50% of programming code is how dedicated towards the user interface
(Galitz, 2007). Although the use of a command line interface is not a problem in
my Python application as the intent for the solution was to purely provide
automation of shipment data transfer to CHEP, an implemented GUI can
significantly benefit the Python application. I propose that a Direct Manipulation
interface be implemented within my Python application. This will allow for the
user to interact with the cues and elements displayed on a screen in-front of
them (Galitz, 2007).

The advantages that can be provided by the use of a Direct Manipulation GUI are
as follows (Galitz, 2007):

e Faster Learning

Page | 49

e Easier Remembering

e Exploits visual/spatial cues
e Easy error recovery

e Provides context

e Immediate feedback

Therefore I would recommend that a GUI is implemented onto the next revision
of my Python application. I have advised my industry mentor of my proposed
future works and he has assured me that CCA will try and attempt to further

develop this application with resources provided by CCA Australia.

SQL Server

In regards to the full scale New Zealand deployment of my Python Application
for all CCA Distribution Centres, I believe that it is crucial that the database is
upgraded to use SQL Server instead of SQLite. A few main benefits that
Microsoft SQL Server provides are as follows (Microsoft, 2015):

e Mission-critical performance
e Faster insights on any data
e Platform for hybrid cloud

e Proven, predictable performance

SQLite is an extremely light cross platform library and I believe that my Python
application could process a larger amount of shipments if SQL Server was used
in conjunction with Python. If my Python application was deployed to all CCA
distribution centres certain changes would be required to be made to my Python
application. SQL Server 2014 is much more powerful when compared to SQLite
and therefore is deemed to be a more suitable solution when deployed to all NZ
distribution centres. SQL Server when compared to SQLite also provides
Immediate Consistency this is whereby methods are in place to ensure

consistency is met whilst operating in a distributed system. (DB-Engines, 2015)

Furthermore, another benefit that must be considered when comparing SQL
Server to SQLite is that Server-side scripts can be deployed (DB-Engines, 2015).
The use of Server-side scripts will enable CCA to use stored procedures if

required (DB-Engines, 2015). Therefore if there was a critical shipment that was

Page | 50

required to be processed immediately, the use of stored procedure could allow

this to occur.

Virtual Desktop Infrastructure

The deployment of the Python application can also be done on Virtual Desktop
infrastructure (VDI). I propose that as part of the Future Work, CCA should
deploy the Python application on a virtual desktop which essentially allows an
operating system to operate via the use of server hardware (PCWorld, 2012).
Therefore the security in this sense is improved as the use of VDI's enforce strict
policies as to who can and cannot access the virtual desktop. The local in-
memory storage and processing can all be performed on a virtual desktop. This
also in-turn reduces the possibility of a rogue user gaining access and making
changes to a local machine. The Python application could possibly be operating
at that time which means that pallet transfers could be interrupted and modified

in @ malicious manner.

Additional Security Measures

I believe that as part of the future work aspect for my Python application
additional security measures can be incorporated into my solution at a later
date. Preferably before my Python application is deployed to all CCA Distribution
Centres. Although the solution I have created meets CCA’s and CHEP’s
requirements, I believe that more can be done in the future in regards to the
security aspect of this project. Focussing on the security mechanisms was not a
primary concern for me as I was told by my industry mentor to focus on the

design and functionality aspect of my Python application.

In this section of the report I will discuss what can be done on the Python
application to further increase the application security. We introduce the concept
Resin which is a system that is operated within a language runtime such as the
Python interpreter (Yip, 2009). Resin provides policy objects, programmers can
then use these objects to specify assertion code. Essentially Resin is based off
the concept whereby application security can be improved with the use of Data
Flow insertions. The runtime that is implemented as part of Resin, checks data
flow assertions in the manner whereby policy objects are propagated along with
the data (Yip, 2009). Filter objects are then invoked when i.e. my Python
application attempts to write the CSV file (Yip, 2009).

Page | 51

The use of Resin can allow future developers of my Python application to ensure
the application follows the correct procedure of coding. Although I followed good
coding practices, it is equally important that this is checked. Resin has been
stated by the authors Alexander et al. that it can be integrated with existing
application code. This benefit therefore can subsequently related back to my
Python application that has already been developed by me. It is important to
note that due to a faulty data flow, vulnerabilities can be severely exploited. In
the case of my Python application, a check against the possibility of a SQL
Injection and Cross-site scripting vulnerability would be a good area to start in

when additional security mechanisms are considered.

Furthermore, the SQL Injection and Cross-site scripting vulnerability has been
described in relation to a Web Application, if this Python application was used
within a Web application it would be crucial to evaluate my Python application
against vulnerabilities that may exist in such an application. SQL injection is

when the user’s input flows through to the SQL query string (Yip, 2009). The

result of this occurring can be detrimental if an attacker managed to hack the
files that are read by my application and also successfully use SQL injection to

insert malicious data into my SQL tables and database.

Different strategies in regards to the use of Resin are discussed to address the
vulnerabilities as aforementioned. The main strategy operates in the following

manner:

e Two policy object classes defined. UntrustedData and SQLSanitized (Yip,
2009)

e Untrusted input data is annotated with the use of the UntrustedData policy
(Yip, 2009)

e SQLSanitized object is attached to sanitized data (Yip, 2009)

e Policy objects are checked on each SQL query. Therefore if the query as
entered by the user contains any characters from the UntrustedData

policy filter will throw an exception (Yip, 2009).

Being able to address cross-scripting vulnerabilities operates in a similar
manner. HTMLSanitized is therefore used instead of the SQLSanitized policy
object.

Page | 52

Additionally, the use of data flow assertions and policy objects can be
implemented on-top of my Python application which will hopefully provide a
greater sense of security for the application. Moreover, the Python application
will also be less susceptible to vulnerabilities such as SQL injection and cross-site

scripting.

In addition to the GUI section of the future work, I recommend that a login
screen is implemented within my Python application. This will allow CCA to
control who has access to the application. Although the system will be
implemented within a secure environment, we must take into account the
possibility of a malicious user who attacks the network systems within CCA and
attempts to change the programming and decision-making logic within my
application. The result of this occurring could potentially equal in a loss of
monetary terms whereby less pallets are transferred out from CCA’s CHEP
account. Therefore CCA will then be liable for each individual pallet that has left
the Distribution Centre but of which has not been accounted for due to the

infection of the Python application.

Furthermore, extending off the idea of a login screen. I also believe that login
security should also be implemented in a manner that utilises two-factor
authentication. This operates by using two individual procedures to login into a
system. The most common method used in relation to this two-factor

authentication is via the use of a password and a smart card (Yang, 2008).

The smart card based approach is as stated by Yang et al. one of the most
commonly used and most convenient methods of two-factor authentication.
Therefore in this scenario where two-factor authentication is deployed, there is a

server (S) that is deployed along with a client (A) (Yang, 2008).

Two-factor authentication can be best described in the scenario whereby a CCA
representative whom can be represented as client (A), is required to login into
the system and view the Customer and Vendor information that is stored within
a database. They would be typically required to enter their username and
password within the login screen, if these credentials are correct they will then
be required to insert their smart-card. Client A has the identity IDa and will

therefore be allowed to login once the server S verifies the users identity.

Page | 53

We are assuming that the smart-card has not been stolen/deactivated. It is
important to note that the client also known as the CCA representative will only
be allowed to login once both factors of authentication have been verified. This
prevents a malicious user from logging in with stolen credentials. An example of
a smart-card is the eToken PRO Smart card. This smart-card is a certificate
based strong authentication solution (Gemalto, 2015). Smart-cards that have
been proven to be secure should be employed in the second factor of a two-

factor authentication procedure.

In relation to increasing the security measures indirectly and directly related to
my program CCA should also ensure the Customer, Vendor and Shipment
information is stored securely and has file access control implemented. This
should be done in a manner whereby only the Python application and
administrator has access to these files. File access control will allow the control
of who can view, modify and delete the data that is vital to the operation of my

program.

Overall within the future works section of this report, I have highlighted certain
areas that should be looked into, and also areas where resources should be

applied to further strengthen and develop the application.

Conclusion

This report has focussed on the business problem, design and development of
my BTech Project also known as my Python application and the CHEP pallet
management system. I have now completed my findings as discussed within the
report. The solution developed by me focuses on the solving the current
business issue where shipment and pallet information is manually keyed in into

an external CHEP Portfolio Plus system.

Furthermore, as a result of this manual process several shipments were
forgotten about or were incorrectly entered. With the use of my Python
application this entire process is completely automated and requires no user-
intervention. If shipment information was not entered into the CHEP Portfolio
Plus software it resulted in CCA being liable for hundreds and thousands of
dollars of ‘lost’ pallets. My developed solution significantly reduces this loss in

both monetary terms and physical pallet terms.

Page | 54

Moreover, I have learnt a large variety of skills that I will find extremely valuable
in regards to my future career aspects. I have also improved my project and
time management skills which I believe is fundamental when developing a
solution. During the course of my project I was required to continuously organise
meetings and schedule tasks with representatives within CCA. I believe this
enabled me to further grow my verbal and written skillset. I was also required to
meet constant deadlines which ensured that I had to upskill my knowledge in
Python, SAP ABAP and SQLite in a time efficient manner. The knowledge and
corporate experience I have gained during the course of this project is deemed
invaluable and I am extremely grateful to have been given this opportunity.

Bibliography
Bettaway. (n.d.). Pallets Network. Retrieved from Bettaway:

https://www.bettaway.com/baw/palletsNetwork

CHEP. (n.d.). Wooden Pallets. Retrieved from CHEP:
http://www.chep.com/pallets/wooden_pallets/

Coca-Cola Amatil. (n.d.). About US. Retrieved from Coca-Cola Amatil:

https://ccamatil.co.nz/about-cca/key-facts/

DB-Engines. (2015). System Properties Comparison Microsoft SQL Server vs.
SQLite. Retrieved from DB-Engines: http://db-
engines.com/en/system/Microsoft+SQL+Server%3BSQLite

EDI Basics. (n.d.). What is EDI? Retrieved from EDI Basics:

http://www.edibasics.com/what-is-edi/

Galitz, W. O. (2007). The Essential Guide to User Interface Design: An
Introduction to GUI Design Principles and Techniques. Indonesia: Wiley

Publishing.

Gemalto. (2015). Certificate-based PKI Smart Cards. Retrieved from Safenet-
Inc: http://www.safenet-inc.com/multi-factor-

authentication/authenticators/pki-smart-cards/

Guo, P. (2014, July 7). Python is Now the Most Popular Introuctiory Teaching
Language at Top US Universities. Retrieved from Association for

Computing Machinery: http://cacm.acm.org/blogs/blog-cacm/176450-

Page | 55

python-is-now-the-most-popular-introductory-teaching-language-at-top-

us-universities/fulltext

Linfo.org. (2004, October). GUI Definition. Retrieved from Linfo.org:
http://www.linfo.org/gui.html

Martin, R. C. (2000). Design Principles and Design Patterns. Robert C. Martin.
Microsoft. (2009). Software Architecture and Design. Microsoft.

Microsoft. (2015). SQL Server 2015. Retrieved from Microsoft.com:
http://www.microsoft.com/en-us/server-cloud/products/sql-server/

Moxon, P. (2014). SAP ABAP Programming For Beginners. Retrieved from

Udemy: https://www.udemy.com/sap-abap-programming-for-beginners/

PCWorld. (2012). The Pros and Cons of Using Virtual Desktop Infrastructure.
Retrieved from PCWorld.com:
http://www.pcworld.com/article/252314/the_pros_and_cons_of_using_vir
tual_desktop_infrastructure.html

Python.org. (2015, February 26). CSV File Reading and Writing. Retrieved from
Python.org: https://docs.python.org/3/library/csv.html

Python.org. (2015, February 26). DB-API 2.0 interface for SQLite databases.
Retrieved from Python.org: https://docs.python.org/3/library/sqlite3.html

Python.org. (2015, February 26). Generating MIME documents. Retrieved from
Python.org: https://docs.python.org/3/library/email.generator.html

Python.org. (2015, May 23). Miscellaneous operating system interfaces.
Retrieved from Python.org: https://docs.python.org/2/library/os.html

Python.org. (2015, May 23). System-specific parameters and functions.
Retrieved from Python.org: https://docs.python.org/2/library/sys.html

Rescorla, E. a. (2012). Datagram transport layer security version 1.2.

Rose, M. (2013). What is SAP? Retrieved from Tech Target:
http://searchsap.techtarget.com/definition/SAP

SQLite.org. (n.d.). About SQLite. Retrieved from SQLite.org:
https://www.sqlite.org/about.html

Page | 56

SQLite.org. (n.d.). Autoincrement In SQLite. Retrieved from SQLite.org:

https://www.sqglite.org/autoinc.html

The Python Programming Language. (1997, 12 09). Retrieved from University of
Michigan:
http://groups.engin.umd.umich.edu/CIS/course.des/cis400/python/pytho

n.html

TracklIt. (n.d.). Asset Tracking and Management. Retrieved from TracklIt:

http://www.trackit.co.nz/product/Asset_Management.aspx

WiseTrack. (n.d.). Asset Tracking Software. Retrieved from WiseTrack:
http://www.wisetrack.com/asset-tracking-software/

Yang, G. a. (2008). Two-factor mutual authentication based on smart cards and

passwords. Journal of Computer and System Sciences, 1160-1172.

Yip, A. a. (2009). Improving application security with data flow assertions.
Proceedings of the ACM SIGOPS 22nd symposium on Operating systems
principles, (pp. 291-304).

Page | 57

